1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
(* SPDX-License-Identifier: MIT *)
(* Copyright (C) 2023-2024 formalsec *)
(* Written by the Smtml programmers *)
type binder =
| Forall
| Exists
| Let_in
type t = expr Hc.hash_consed
and expr =
| Val of Value.t
| Ptr of
{ base : int32
; offset : t
}
| Symbol of Symbol.t
| List of t list
| App of Symbol.t * t list
| Unop of Ty.t * Ty.unop * t
| Binop of Ty.t * Ty.binop * t * t
| Triop of Ty.t * Ty.triop * t * t * t
| Relop of Ty.t * Ty.relop * t * t
| Cvtop of Ty.t * Ty.cvtop * t
| Naryop of Ty.t * Ty.naryop * t list
| Extract of t * int * int
| Concat of t * t
| Binder of binder * t list * t
let equal_binder a b =
match (a, b) with
| Forall, Forall | Exists, Exists | Let_in, Let_in -> true
| (Forall | Exists | Let_in), _ -> false
module Expr = struct
type t = expr
let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
else false
let equal (e1 : expr) (e2 : expr) : bool =
match (e1, e2) with
| Val v1, Val v2 -> Value.equal v1 v2
| Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
Int32.equal b1 b2 && phys_equal o1 o2
| Symbol s1, Symbol s2 -> Symbol.equal s1 s2
| List l1, List l2 -> list_eq l1 l2
| App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
| Unop (t1, op1, e1), Unop (t2, op2, e2) ->
Ty.equal t1 t2 && Ty.unop_equal op1 op2 && phys_equal e1 e2
| Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
Ty.equal t1 t2 && Ty.binop_equal op1 op2 && phys_equal e1 e2
&& phys_equal e3 e4
| Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
Ty.equal t1 t2 && Ty.relop_equal op1 op2 && phys_equal e1 e2
&& phys_equal e3 e4
| Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
Ty.equal t1 t2 && Ty.triop_equal op1 op2 && phys_equal e1 e2
&& phys_equal e3 e4 && phys_equal e5 e6
| Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
Ty.equal t1 t2 && Ty.cvtop_equal op1 op2 && phys_equal e1 e2
| Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
Ty.equal t1 t2 && Ty.naryop_equal op1 op2 && list_eq l1 l2
| Extract (e1, h1, l1), Extract (e2, h2, l2) ->
phys_equal e1 e2 && h1 = h2 && l1 = l2
| Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
| Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
equal_binder binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
| ( ( Val _ | Ptr _ | Symbol _ | List _ | App _ | Unop _ | Binop _ | Triop _
| Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _ | Binder _ )
, _ ) ->
false
let hash (e : expr) : int =
let h x = Hashtbl.hash x in
match e with
| Val v -> h v
| Ptr { base; offset } -> h (base, offset.tag)
| Symbol s -> h s
| List v -> h v
| App (x, es) -> h (x, es)
| Unop (ty, op, e) -> h (ty, op, e.tag)
| Cvtop (ty, op, e) -> h (ty, op, e.tag)
| Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
| Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
| Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
| Naryop (ty, op, es) -> h (ty, op, es)
| Extract (e, hi, lo) -> h (e.tag, hi, lo)
| Concat (e1, e2) -> h (e1.tag, e2.tag)
| Binder (b, vars, e) -> h (b, vars, e.tag)
end
module Hc = Hc.Make [@inlined hint] (Expr)
let equal (hte1 : t) (hte2 : t) = Int.equal hte1.tag hte2.tag [@@inline]
let hash (hte : t) = hte.tag [@@inline]
module Key = struct
type nonrec t = t
let to_int hte = hash hte
end
module Set = PatriciaTree.MakeHashconsedSet (Key) ()
let make (e : expr) = Hc.hashcons e [@@inline]
let view (hte : t) : expr = hte.node [@@inline]
let compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag [@@inline]
let symbol s = make (Symbol s)
let is_num (e : t) = match view e with Val (Num _) -> true | _ -> false
(** The return type of an expression *)
let rec ty (hte : t) : Ty.t =
match view hte with
| Val x -> Value.type_of x
| Ptr _ -> Ty_bitv 32
| Symbol x -> Symbol.type_of x
| List _ -> Ty_list
| App _ -> Ty_app
| Unop (ty, _, _) -> ty
| Binop (ty, _, _, _) -> ty
| Triop (_, Ite, _, hte1, hte2) ->
let ty1 = ty hte1 in
let ty2 = ty hte2 in
assert (Ty.equal ty1 ty2);
ty1
| Triop (ty, _, _, _, _) -> ty
| Relop (ty, _, _, _) -> ty
| Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
| Cvtop (ty, _, _) -> ty
| Naryop (ty, _, _) -> ty
| Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
| Concat (e1, e2) -> (
match (ty e1, ty e2) with
| Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
| t1, t2 ->
Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
| Binder (_, _, e) -> ty e
let rec is_symbolic (v : t) : bool =
match view v with
| Val _ -> false
| Symbol _ -> true
| Ptr { offset; _ } -> is_symbolic offset
| List vs -> List.exists is_symbolic vs
| App (_, vs) -> List.exists is_symbolic vs
| Unop (_, _, v) -> is_symbolic v
| Binop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
| Triop (_, _, v1, v2, v3) ->
is_symbolic v1 || is_symbolic v2 || is_symbolic v3
| Cvtop (_, _, v) -> is_symbolic v
| Relop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
| Naryop (_, _, vs) -> List.exists is_symbolic vs
| Extract (e, _, _) -> is_symbolic e
| Concat (e1, e2) -> is_symbolic e1 || is_symbolic e2
| Binder (_, _, e) -> is_symbolic e
let get_symbols (hte : t list) =
let tbl = Hashtbl.create 64 in
let rec symbols (hte : t) =
match view hte with
| Val _ -> ()
| Ptr { offset; _ } -> symbols offset
| Symbol s -> Hashtbl.replace tbl s ()
| List es -> List.iter symbols es
| App (_, es) -> List.iter symbols es
| Unop (_, _, e1) -> symbols e1
| Binop (_, _, e1, e2) ->
symbols e1;
symbols e2
| Triop (_, _, e1, e2, e3) ->
symbols e1;
symbols e2;
symbols e3
| Relop (_, _, e1, e2) ->
symbols e1;
symbols e2
| Cvtop (_, _, e) -> symbols e
| Naryop (_, _, es) -> List.iter symbols es
| Extract (e, _, _) -> symbols e
| Concat (e1, e2) ->
symbols e1;
symbols e2
| Binder (_, vars, e) ->
List.iter symbols vars;
symbols e
in
List.iter symbols hte;
Hashtbl.fold (fun k () acc -> k :: acc) tbl []
let negate_relop (hte : t) : (t, string) Result.t =
let e =
match view hte with
| Relop (ty, Eq, e1, e2) -> Ok (Relop (ty, Ne, e1, e2))
| Relop (ty, Ne, e1, e2) -> Ok (Relop (ty, Eq, e1, e2))
| Relop (ty, Lt, e1, e2) -> Ok (Relop (ty, Ge, e1, e2))
| Relop (ty, LtU, e1, e2) -> Ok (Relop (ty, GeU, e1, e2))
| Relop (ty, Le, e1, e2) -> Ok (Relop (ty, Gt, e1, e2))
| Relop (ty, LeU, e1, e2) -> Ok (Relop (ty, GtU, e1, e2))
| Relop (ty, Gt, e1, e2) -> Ok (Relop (ty, Le, e1, e2))
| Relop (ty, GtU, e1, e2) -> Ok (Relop (ty, LeU, e1, e2))
| Relop (ty, Ge, e1, e2) -> Ok (Relop (ty, Lt, e1, e2))
| Relop (ty, GeU, e1, e2) -> Ok (Relop (ty, LtU, e1, e2))
| _ -> Error "negate_relop: not a relop."
in
Result.map make e
module Pp = struct
let pp_binder fmt = function
| Forall -> Fmt.string fmt "forall"
| Exists -> Fmt.string fmt "exists"
| Let_in -> Fmt.string fmt "let"
let rec pp fmt (hte : t) =
match view hte with
| Val v -> Value.pp fmt v
| Ptr { base; offset } -> Fmt.pf fmt "(Ptr (i32 %ld) %a)" base pp offset
| Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
| List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
| App (s, v) ->
Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s
(Fmt.list ~sep:Fmt.comma pp)
v
| Unop (ty, op, e) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.pp_unop op pp e
| Binop (ty, op, e1, e2) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.pp_binop op pp e1 pp
e2
| Triop (ty, op, e1, e2, e3) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.pp_triop op pp e1
pp e2 pp e3
| Relop (ty, op, e1, e2) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.pp_relop op pp e1 pp
e2
| Cvtop (ty, op, e) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.pp_cvtop op pp e
| Naryop (ty, op, es) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.pp_naryop op
(Fmt.list ~sep:Fmt.comma pp)
es
| Extract (e, h, l) ->
Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
| Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
| Binder (b, vars, e) ->
Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" pp_binder b
(Fmt.list ~sep:Fmt.sp pp) vars pp e
let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
let pp_smt fmt (es : t list) : unit =
let pp_symbols fmt syms =
Fmt.list ~sep:Fmt.semi
(fun fmt sym ->
let t = Symbol.type_of sym in
Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
fmt syms
in
let pp_asserts fmt es =
Fmt.list ~sep:Fmt.semi
(fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e)
fmt es
in
let syms = get_symbols es in
if List.length syms > 0 then Fmt.pf fmt "%a@\n" pp_symbols syms;
if List.length es > 0 then Fmt.pf fmt "%a@\n" pp_asserts es;
Fmt.string fmt "(check-sat)"
end
let pp = Pp.pp
let pp_list = Pp.pp_list
let pp_smt = Pp.pp_smt
let to_string e = Fmt.str "%a" pp e
let value (v : Value.t) : t = make (Val v) [@@inline]
let ptr base offset = make (Ptr { base; offset })
let app symbol args = make (App (symbol, args))
let let_in vars expr = make (Binder (Let_in, vars, expr))
let unop' ty op hte = make (Unop (ty, op, hte)) [@@inline]
let unop ty op hte =
match (op, view hte) with
| Ty.(Regexp_loop _ | Regexp_star), _ -> unop' ty op hte
| _, Val v -> value (Eval.unop ty op v)
| Not, Unop (_, Not, hte') -> hte'
| Neg, Unop (_, Neg, hte') -> hte'
| Trim, Cvtop (Ty_real, ToString, _) -> hte
| Head, List (hd :: _) -> hd
| Tail, List (_ :: tl) -> make (List tl)
| Reverse, List es -> make (List (List.rev es))
| Length, List es -> value (Int (List.length es))
| _ -> unop' ty op hte
let binop' ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
let rec binop ty op hte1 hte2 =
match (op, view hte1, view hte2) with
| Ty.(String_in_re | Regexp_range), _, _ -> binop' ty op hte1 hte2
| op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
| Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
if Int32.equal b1 b2 then binop ty Sub os1 os2 else binop' ty op hte1 hte2
| Add, Ptr { base; offset }, _ ->
ptr base (binop (Ty_bitv 32) Add offset hte2)
| Sub, Ptr { base; offset }, _ ->
ptr base (binop (Ty_bitv 32) Sub offset hte2)
| Rem, Ptr { base; offset }, _ ->
let rhs = value (Num (I32 base)) in
let addr = binop (Ty_bitv 32) Add rhs offset in
binop ty Rem addr hte2
| Add, _, Ptr { base; offset } ->
ptr base (binop (Ty_bitv 32) Add offset hte1)
| Sub, _, Ptr { base; offset } ->
binop ty Sub hte1 (binop (Ty_bitv 32) Add (value (Num (I32 base))) offset)
| (Add | Or), Val (Num (I32 0l)), _ -> hte2
| (And | Div | DivU | Mul | Rem | RemU), Val (Num (I32 0l)), _ -> hte1
| (Add | Or), _, Val (Num (I32 0l)) -> hte1
| (And | Mul), _, Val (Num (I32 0l)) -> hte2
| Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
let v = value (Eval.binop ty Add v1 v2) in
binop' ty Add x v
| Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
let v = value (Eval.binop ty Add v1 v2) in
binop' ty Sub x v
| Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
let v = value (Eval.binop ty Mul v1 v2) in
binop' ty Mul x v
| Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
let v = value (Eval.binop ty Add v1 v2) in
binop' ty Add v x
| Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
let v = value (Eval.binop ty Mul v1 v2) in
binop' ty Mul v x
| At, List es, Val (Int n) -> List.nth es n
| List_cons, _, List es -> make (List (hte1 :: es))
| List_append, List _, (List [] | Val (List [])) -> hte1
| List_append, (List [] | Val (List [])), List _ -> hte2
| List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
| List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
| List_append, List l0, List l1 -> make (List (l0 @ l1))
| _ -> binop' ty op hte1 hte2
let triop' ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
let triop ty op e1 e2 e3 =
match (op, view e1, view e2, view e3) with
| Ty.Ite, Val True, _, _ -> e2
| Ite, Val False, _, _ -> e3
| op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
| _ -> triop' ty op e1 e2 e3
let relop' ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
let rec relop ty op hte1 hte2 =
match (op, view hte1, view hte2) with
| op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
| Ty.Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
if Float.is_nan v || Float.is_infinite v then value True
else relop' ty op hte1 hte2
| _, Val (Real v), _ | _, _, Val (Real v) ->
if Float.is_nan v || Float.is_infinite v then value False
else relop' ty op hte1 hte2
| Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
| Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
| Eq, _, Val (App (`Op "symbol", [ Str _ ]))
| Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
value False
| Ne, _, Val (App (`Op "symbol", [ Str _ ]))
| Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
value True
| Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
if Int32.equal b1 b2 then relop Ty_bool Eq os1 os2 else value False
| Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
if Int32.equal b1 b2 then relop Ty_bool Ne os1 os2 else value True
| ( (LtU | LeU | GtU | GeU)
, Ptr { base = b1; offset = os1 }
, Ptr { base = b2; offset = os2 } ) ->
if Int32.equal b1 b2 then relop ty op os1 os2
else
value
(if Eval.relop ty op (Num (I32 b1)) (Num (I32 b2)) then True else False)
| op, Val (Num _ as n), Ptr { base; offset = { node = Val (Num _ as o); _ } }
->
let base = Eval.binop (Ty_bitv 32) Add (Num (I32 base)) o in
value (if Eval.relop ty op n base then True else False)
| op, Ptr { base; offset = { node = Val (Num _ as o); _ } }, Val (Num _ as n)
->
let base = Eval.binop (Ty_bitv 32) Add (Num (I32 base)) o in
value (if Eval.relop ty op base n then True else False)
| op, List l1, List l2 -> relop_list op l1 l2
| _, _, _ -> relop' ty op hte1 hte2
and relop_list op l1 l2 =
match (op, l1, l2) with
| Eq, [], [] -> value True
| Eq, _, [] | Eq, [], _ -> value False
| Eq, l1, l2 ->
if not (List.compare_lengths l1 l2 = 0) then value False
else
List.fold_left2
(fun acc a b ->
binop Ty_bool And acc
@@
match (ty a, ty b) with
| Ty_real, Ty_real -> relop Ty_real Eq a b
| _ -> relop Ty_bool Eq a b )
(value True) l1 l2
| Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
| (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
let cvtop' ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
let cvtop ty op hte =
match (op, view hte) with
| Ty.String_to_re, _ -> cvtop' ty op hte
| _, Val v -> value (Eval.cvtop ty op v)
| String_to_float, Cvtop (Ty_real, ToString, real) -> real
| _ -> cvtop' ty op hte
let naryop' ty op es = make (Naryop (ty, op, es)) [@@inline]
let naryop ty op es =
if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
then
let vs =
List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
in
value (Eval.naryop ty op vs)
else naryop' ty op es
let nland64 (x : int64) (n : int) =
let rec loop x' n' acc =
if n' = 0 then Int64.logand x' acc
else loop x' (n' - 1) Int64.(logor (shift_left acc 8) 0xffL)
in
loop x n 0L
let nland32 (x : int32) (n : int) =
let rec loop x' n' acc =
if n' = 0 then Int32.logand x' acc
else loop x' (n' - 1) Int32.(logor (shift_left acc 8) 0xffl)
in
loop x n 0l
let extract' (hte : t) ~(high : int) ~(low : int) : t =
make (Extract (hte, high, low))
[@@inline]
let extract (hte : t) ~(high : int) ~(low : int) : t =
match view hte with
| Val (Num (I64 x)) ->
let x' = nland64 (Int64.shift_right x (low * 8)) (high - low) in
value (Num (I64 x'))
| _ -> if high - low = Ty.size (ty hte) then hte else extract' hte ~high ~low
let concat' (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
let concat (msb : t) (lsb : t) : t =
match (view msb, view lsb) with
| ( Extract ({ node = Val (Num (I64 x2)); _ }, h2, l2)
, Extract ({ node = Val (Num (I64 x1)); _ }, h1, l1) ) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
extract' (value (Num (I64 x))) ~high:(d1 + d2) ~low:0
| ( Extract ({ node = Val (Num (I32 x2)); _ }, h2, l2)
, Extract ({ node = Val (Num (I32 x1)); _ }, h1, l1) ) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland32 (Int32.shift_right x1 (l1 * 8)) d1 in
let x2' = nland32 (Int32.shift_right x2 (l2 * 8)) d2 in
let x = Int32.(logor (shift_left x2' (d1 * 8)) x1') in
extract' (value (Num (I32 x))) ~high:(d1 + d2) ~low:0
| Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
extract' s1 ~high:h ~low:l
| ( Extract ({ node = Val (Num (I64 x2)); _ }, h2, l2)
, Concat
({ node = Extract ({ node = Val (Num (I64 x1)); _ }, h1, l1); _ }, se) )
when not (is_num se) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
concat' (extract' (value (Num (I64 x))) ~high:(d1 + d2) ~low:0) se
| _ -> concat' msb lsb
let rec simplify_expr ?(rm_extract = true) (hte : t) : t =
match view hte with
| Val _ | Symbol _ -> hte
| Ptr { base; offset } -> ptr base (simplify_expr offset)
| List es -> make @@ List (List.map simplify_expr es)
| App (x, es) -> make @@ App (x, List.map simplify_expr es)
| Unop (ty, op, e) ->
let e = simplify_expr e in
unop ty op e
| Binop (ty, op, e1, e2) ->
let e1 = simplify_expr e1 in
let e2 = simplify_expr e2 in
binop ty op e1 e2
| Relop (ty, op, e1, e2) ->
let e1 = simplify_expr e1 in
let e2 = simplify_expr e2 in
relop ty op e1 e2
| Triop (ty, op, c, e1, e2) ->
let c = simplify_expr c in
let e1 = simplify_expr e1 in
let e2 = simplify_expr e2 in
triop ty op c e1 e2
| Cvtop (ty, op, e) ->
let e = simplify_expr e in
cvtop ty op e
| Naryop (ty, op, es) ->
let es = List.map (simplify_expr ~rm_extract:false) es in
naryop ty op es
| Extract (s, high, low) ->
if not rm_extract then hte else extract s ~high ~low
| Concat (e1, e2) ->
let msb = simplify_expr ~rm_extract:false e1 in
let lsb = simplify_expr ~rm_extract:false e2 in
concat msb lsb
| Binder _ ->
(* Not simplifying anything atm *)
hte
let simplify (hte : t) : t =
let rec loop x =
let simpl_x = simplify_expr x in
if equal x simpl_x then simpl_x else loop simpl_x
in
loop hte
module Bool = struct
open Ty
let of_val = function
| Val True -> Some true
| Val False -> Some false
| _ -> None
let true_ = value True
let false_ = value False
let to_val b = if b then true_ else false_
let v b = to_val b [@@inline]
let not b =
let bexpr = view b in
match of_val bexpr with
| Some b -> to_val (not b)
| None -> (
match bexpr with
| Unop (Ty_bool, Not, cond) -> cond
| _ -> unop Ty_bool Not b )
let equal b1 b2 =
match (view b1, view b2) with
| Val True, Val True | Val False, Val False -> true_
| _ -> relop Ty_bool Eq b1 b2
let distinct b1 b2 =
match (view b1, view b2) with
| Val True, Val False | Val False, Val True -> true_
| _ -> relop Ty_bool Ne b1 b2
let and_ b1 b2 =
match (of_val (view b1), of_val (view b2)) with
| Some true, _ -> b2
| _, Some true -> b1
| Some false, _ | _, Some false -> false_
| _ -> binop Ty_bool And b1 b2
let or_ b1 b2 =
match (of_val (view b1), of_val (view b2)) with
| Some false, _ -> b2
| _, Some false -> b1
| Some true, _ | _, Some true -> true_
| _ -> binop Ty_bool Or b1 b2
let ite c r1 r2 = triop Ty_bool Ite c r1 r2
end
module Make (T : sig
type elt
val ty : Ty.t
val num : elt -> Num.t
end) =
struct
open Ty
let v i = value (Num (T.num i))
let sym x = symbol Symbol.(x @: T.ty)
let ( ~- ) e = unop T.ty Neg e
let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
let ( > ) e1 e2 = relop T.ty Gt e1 e2
let ( >= ) e1 e2 = relop T.ty Ge e1 e2
let ( < ) e1 e2 = relop T.ty Lt e1 e2
let ( <= ) e1 e2 = relop T.ty Le e1 e2
end
module Bitv = struct
open Ty
module I8 = Make (struct
type elt = int
let ty = Ty_bitv 8
let num i = Num.I8 i
end)
module I32 = Make (struct
type elt = int32
let ty = Ty_bitv 32
let num i = Num.I32 i
end)
module I64 = Make (struct
type elt = int64
let ty = Ty_bitv 64
let num i = Num.I64 i
end)
end
module Fpa = struct
open Ty
module F32 = struct
include Make (struct
type elt = float
let ty = Ty_fp 32
let num f = Num.F32 (Int32.bits_of_float f)
end)
(* Redeclare equality due to incorrect theory annotation *)
let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
end
module F64 = struct
include Make (struct
type elt = float
let ty = Ty_fp 64
let num f = Num.F64 (Int64.bits_of_float f)
end)
(* Redeclare equality due to incorrect theory annotation *)
let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
end
end