1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
(* SPDX-License-Identifier: MIT *)
(* Copyright (C) 2023-2024 formalsec *)
(* Written by the Smtml programmers *)
(* Adapted from: *)
(* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec/ixx.ml, *)
(* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec/fxx.ml, and *)
(* - https://github.com/WebAssembly/spec/blob/main/interpreter/exec *)
(* TODO: This module should be concrete or a part of the reducer *)
type op_type =
[ `Unop of Ty.Unop.t
| `Binop of Ty.Binop.t
| `Relop of Ty.Relop.t
| `Triop of Ty.Triop.t
| `Cvtop of Ty.Cvtop.t
| `Naryop of Ty.Naryop.t
]
exception Value of Ty.t
exception
TypeError of
{ index : int
; value : Value.t
; ty : Ty.t
; op : op_type
}
exception DivideByZero
exception ConversionToInteger
exception IntegerOverflow
exception IndexOutOfBounds
exception ParseNumError
let of_arg f n v op =
try f v
with Value t -> raise (TypeError { index = n; value = v; ty = t; op })
[@@inline]
module Int = struct
let to_value (i : int) : Value.t = Int i [@@inline]
let of_value (n : int) (op : op_type) (v : Value.t) : int =
of_arg (function Int i -> i | _ -> raise_notrace (Value Ty_int)) n v op
[@@inline]
let unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let f =
match op with
| Neg -> ( ~- )
| Abs -> abs
| _ -> Fmt.failwith {|unop: Unsupported int operator "%a"|} Ty.Unop.pp op
in
to_value (f (of_value 1 (`Unop op) v))
let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let f =
match op with
| Add -> ( + )
| Sub -> ( - )
| Mul -> ( * )
| Div -> ( / )
| Rem -> ( mod )
| Pow -> fun x y -> int_of_float (float_of_int x ** float_of_int y)
| Min -> min
| Max -> max
| And -> ( land )
| Or -> ( lor )
| Xor -> ( lxor )
| Shl -> ( lsl )
| ShrL -> ( lsr )
| ShrA -> ( asr )
| _ ->
Fmt.failwith {|binop: Unsupported int operator "%a"|} Ty.Binop.pp op
in
to_value (f (of_value 1 (`Binop op) v1) (of_value 2 (`Binop op) v2))
let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let f =
match op with
| Lt -> ( < )
| Le -> ( <= )
| Gt -> ( > )
| Ge -> ( >= )
| Eq -> ( = )
| Ne -> ( <> )
| _ ->
Fmt.failwith {|relop: Unsupported int operator "%a"|} Ty.Relop.pp op
in
f (of_value 1 (`Relop op) v1) (of_value 2 (`Relop op) v2)
let of_bool : Value.t -> int = function
| True -> 1
| False -> 0
| _ -> assert false
[@@inline]
let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t =
match op with
| OfBool -> to_value (of_bool v)
| Reinterpret_float ->
Int (Int.of_float (match v with Real v -> v | _ -> assert false))
| ToString -> Str (string_of_int (of_value 1 (`Cvtop op) v))
| _ -> Fmt.failwith {|cvtop: Unsupported int operator "%a"|} Ty.Cvtop.pp op
end
module Real = struct
let to_value (v : float) : Value.t = Real v [@@inline]
let of_value (n : int) (op : op_type) (v : Value.t) : float =
of_arg (function Real v -> v | _ -> raise_notrace (Value Ty_int)) n v op
[@@inline]
let unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let v = of_value 1 (`Unop op) v in
match op with
| Neg -> to_value @@ Float.neg v
| Abs -> to_value @@ Float.abs v
| Sqrt -> to_value @@ Float.sqrt v
| Nearest -> to_value @@ Float.round v
| Ceil -> to_value @@ Float.ceil v
| Floor -> to_value @@ Float.floor v
| Trunc -> to_value @@ Float.trunc v
| Is_nan -> if Float.is_nan v then Value.True else Value.False
| _ -> Fmt.failwith {|unop: Unsupported real operator "%a"|} Ty.Unop.pp op
let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let f =
match op with
| Add -> Float.add
| Sub -> Float.sub
| Mul -> Float.mul
| Div -> Float.div
| Rem -> Float.rem
| Min -> Float.min
| Max -> Float.max
| Pow -> Float.pow
| _ ->
Fmt.failwith {|binop: Unsupported real operator "%a"|} Ty.Binop.pp op
in
to_value (f (of_value 1 (`Binop op) v1) (of_value 2 (`Binop op) v2))
let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let f =
match op with
| Lt -> Float.Infix.( < )
| Le -> Float.Infix.( <= )
| Gt -> Float.Infix.( > )
| Ge -> Float.Infix.( >= )
| Eq -> Float.Infix.( = )
| Ne -> Float.Infix.( <> )
| _ ->
Fmt.failwith {|relop: Unsupported real operator "%a"|} Ty.Relop.pp op
in
f (of_value 1 (`Relop op) v1) (of_value 2 (`Relop op) v2)
let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t =
let op' = `Cvtop op in
match op with
| ToString -> Str (Float.to_string (of_value 1 op' v))
| OfString ->
let v = match v with Str v -> v | _ -> raise_notrace (Value Ty_str) in
to_value (Float.of_string v)
| Reinterpret_int ->
let v = match v with Int v -> v | _ -> raise_notrace (Value Ty_int) in
to_value (Float.of_int v)
| Reinterpret_float -> Int (Float.to_int (of_value 1 op' v))
| _ -> Fmt.failwith {|cvtop: Unsupported real operator "%a"|} Ty.Cvtop.pp op
end
module Bool = struct
let to_value (b : bool) : Value.t = if b then True else False [@@inline]
let of_value (n : int) (op : op_type) (v : Value.t) : bool =
of_arg
(function
| True -> true | False -> false | _ -> raise_notrace (Value Ty_bool) )
n v op
[@@inline]
let unop (op : Ty.Unop.t) v =
let b = of_value 1 (`Unop op) v in
match op with
| Not -> to_value (not b)
| _ -> Fmt.failwith {|unop: Unsupported bool operator "%a"|} Ty.Unop.pp op
let xor b1 b2 =
match (b1, b2) with
| true, true -> false
| true, false -> true
| false, true -> true
| false, false -> false
let binop (op : Ty.Binop.t) v1 v2 =
let f =
match op with
| And -> ( && )
| Or -> ( || )
| Xor -> xor
| _ ->
Fmt.failwith {|binop: Unsupported bool operator "%a"|} Ty.Binop.pp op
in
to_value (f (of_value 1 (`Binop op) v1) (of_value 2 (`Binop op) v2))
let triop (op : Ty.Triop.t) c v1 v2 =
match op with
| Ite -> ( match of_value 1 (`Triop op) c with true -> v1 | false -> v2 )
| _ -> Fmt.failwith {|triop: Unsupported bool operator "%a"|} Ty.Triop.pp op
let relop (op : Ty.Relop.t) v1 v2 =
match op with
| Eq -> Value.equal v1 v2
| Ne -> not (Value.equal v1 v2)
| _ -> Fmt.failwith {|relop: Unsupported bool operator "%a"|} Ty.Relop.pp op
let cvtop _ _ = assert false
let naryop (op : Ty.Naryop.t) vs =
let b =
match op with
| Logand ->
List.fold_left ( && ) true
(List.mapi (fun i -> of_value i (`Naryop op)) vs)
| Logor ->
List.fold_left ( || ) false
(List.mapi (fun i -> of_value i (`Naryop op)) vs)
| _ ->
Fmt.failwith {|naryop: Unsupported bool operator "%a"|} Ty.Naryop.pp op
in
to_value b
end
module Str = struct
let to_value (str : string) : Value.t = Str str [@@inline]
let of_value (n : int) (op : op_type) (v : Value.t) : string =
of_arg
(function Str str -> str | _ -> raise_notrace (Value Ty_str))
n v op
[@@inline]
let replace s t t' =
let len_s = String.length s in
let len_t = String.length t in
let rec loop i =
if i >= len_s then s
else if i + len_t > len_s then s
else if String.equal (String.sub s i len_t) t then
let s' = Fmt.str "%s%s" (String.sub s 0 i) t' in
let s'' = String.sub s (i + len_t) (len_s - i - len_t) in
Fmt.str "%s%s" s' s''
else loop (i + 1)
in
loop 0
let indexof s sub start =
let len_s = String.length s in
let len_sub = String.length sub in
let max_i = len_s - 1 in
let rec loop i =
if i > max_i then ~-1
else if i + len_sub > len_s then ~-1
else if String.equal sub (String.sub s i len_sub) then i
else loop (i + 1)
in
if start <= 0 then loop 0 else loop start
let contains s sub = if indexof s sub 0 < 0 then false else true
let unop (op : Ty.Unop.t) v =
let str = of_value 1 (`Unop op) v in
match op with
| Length -> Int.to_value (String.length str)
| Trim -> to_value (String.trim str)
| _ -> Fmt.failwith {|unop: Unsupported str operator "%a"|} Ty.Unop.pp op
let binop (op : Ty.Binop.t) v1 v2 =
let op' = `Binop op in
let str = of_value 1 op' v1 in
match op with
| At -> (
let i = Int.of_value 2 op' v2 in
try to_value (Fmt.str "%c" (String.get str i))
with Invalid_argument _ -> raise IndexOutOfBounds )
| String_prefix ->
Bool.to_value (String.starts_with ~prefix:str (of_value 2 op' v2))
| String_suffix ->
Bool.to_value (String.ends_with ~suffix:str (of_value 2 op' v2))
| String_contains -> Bool.to_value (contains str (of_value 2 op' v2))
| _ -> Fmt.failwith {|binop: Unsupported str operator "%a"|} Ty.Binop.pp op
let triop (op : Ty.Triop.t) v1 v2 v3 =
let op' = `Triop op in
let str = of_value 1 op' v1 in
match op with
| String_extract ->
let i = Int.of_value 2 op' v2 in
let len = Int.of_value 3 op' v3 in
to_value (String.sub str i len)
| String_replace ->
let t = of_value 2 op' v2 in
let t' = of_value 2 op' v3 in
to_value (replace str t t')
| String_index ->
let t = of_value 2 op' v2 in
let i = Int.of_value 3 op' v3 in
Int.to_value (indexof str t i)
| _ -> Fmt.failwith {|triop: Unsupported str operator "%a"|} Ty.Triop.pp op
let relop (op : Ty.Relop.t) v1 v2 =
let f =
match op with
| Lt -> ( < )
| Le -> ( <= )
| Gt -> ( > )
| Ge -> ( >= )
| Eq -> ( = )
| Ne -> ( <> )
| _ ->
Fmt.failwith {|relop: Unsupported string operator "%a"|} Ty.Relop.pp op
in
let f x y = f (String.compare x y) 0 in
f (of_value 1 (`Relop op) v1) (of_value 2 (`Relop op) v2)
let cvtop (op : Ty.Cvtop.t) v =
let op' = `Cvtop op in
match op with
| String_to_code ->
let str = of_value 1 op' v in
Int.to_value (Char.code str.[0])
| String_from_code ->
let code = Int.of_value 1 op' v in
to_value (String.make 1 (Char.chr code))
| String_to_int ->
let s = of_value 1 op' v in
let i =
match int_of_string s with None -> raise ParseNumError | Some i -> i
in
Int.to_value i
| String_from_int -> to_value (string_of_int (Int.of_value 1 op' v))
| String_to_float ->
let s = of_value 1 op' v in
let f =
match float_of_string s with None -> raise ParseNumError | Some f -> f
in
Real.to_value f
| _ -> Fmt.failwith {|cvtop: Unsupported str operator "%a"|} Ty.Cvtop.pp op
let naryop (op : Ty.Naryop.t) vs =
let op' = `Naryop op in
match op with
| Concat -> to_value (String.concat "" (List.map (of_value 0 op') vs))
| _ ->
Fmt.failwith {|naryop: Unsupported str operator "%a"|} Ty.Naryop.pp op
end
module Lst = struct
let of_value (n : int) (op : op_type) (v : Value.t) : Value.t list =
of_arg
(function List lst -> lst | _ -> raise_notrace (Value Ty_list))
n v op
[@@inline]
let unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let lst = of_value 1 (`Unop op) v in
match op with
| Head -> List.hd lst
| Tail -> List (List.tl lst)
| Length -> Int.to_value (List.length lst)
| Reverse -> List (List.rev lst)
| _ -> Fmt.failwith {|unop: Unsupported list operator "%a"|} Ty.Unop.pp op
let binop (op : Ty.Binop.t) v1 v2 =
let op' = `Binop op in
match op with
| At -> (
let lst = of_value 1 op' v1 in
let i = Int.of_value 2 op' v2 in
try List.nth lst i
with Failure _ | Invalid_argument _ -> raise IndexOutOfBounds )
| List_cons -> List (v1 :: of_value 1 op' v2)
| List_append -> List (of_value 1 op' v1 @ of_value 2 op' v2)
| _ -> Fmt.failwith {|binop: Unsupported list operator "%a"|} Ty.Binop.pp op
let triop (op : Ty.Triop.t) (v1 : Value.t) (v2 : Value.t) (v3 : Value.t) :
Value.t =
let op' = `Triop op in
match op with
| List_set ->
let lst = of_value 1 op' v1 in
let i = Int.of_value 2 op' v2 in
let rec set i lst v acc =
match (i, lst) with
| 0, _ :: tl -> List.rev_append acc (v :: tl)
| i, hd :: tl -> set (i - 1) tl v (hd :: acc)
| _, [] -> raise IndexOutOfBounds
in
List (set i lst v3 [])
| _ -> Fmt.failwith {|triop: Unsupported list operator "%a"|} Ty.Triop.pp op
let naryop (op : Ty.Naryop.t) (vs : Value.t list) : Value.t =
let op' = `Naryop op in
match op with
| Concat -> List (List.concat_map (of_value 0 op') vs)
| _ ->
Fmt.failwith {|naryop: Unsupported list operator "%a"|} Ty.Naryop.pp op
end
module I32 = struct
let to_value (i : int32) : Value.t = Num (I32 i) [@@inline]
let of_value (n : int) (op : op_type) (v : Value.t) : int32 =
of_arg
(function Num (I32 i) -> i | _ -> raise_notrace (Value (Ty_bitv 32)))
n v op
[@@inline]
let cmp_u x op y = op Int32.(add x min_int) Int32.(add y min_int) [@@inline]
let lt_u x y = cmp_u x Int32.Infix.( < ) y [@@inline]
let le_u x y = cmp_u x Int32.Infix.( <= ) y [@@inline]
let gt_u x y = cmp_u x Int32.Infix.( > ) y [@@inline]
let ge_u x y = cmp_u x Int32.Infix.( >= ) y [@@inline]
let shift f x y = f x Int32.(to_int (logand y 31l)) [@@inline]
let shl x y = shift Int32.shift_left x y [@@inline]
let shr_s x y = shift Int32.shift_right x y [@@inline]
let shr_u x y = shift Int32.shift_right_logical x y [@@inline]
(* Stolen rotl and rotr from: *)
(* https://github.com/OCamlPro/owi/blob/main/src/int32.ml *)
(* We must mask the count to implement rotates via shifts. *)
let clamp_rotate_count n = Int32.(to_int (logand n 31l)) [@@inline]
let rotl x y =
let n = clamp_rotate_count y in
Int32.logor (shl x (Int32.of_int n)) (shr_u x (Int32.of_int (32 - n)))
[@@inline]
let rotr x y =
let n = clamp_rotate_count y in
Int32.logor (shr_u x (Int32.of_int n)) (shl x (Int32.of_int (32 - n)))
[@@inline]
let clz n =
let n = Ocaml_intrinsics.Int32.count_leading_zeros n in
Int32.of_int n
let ctz n =
let n = Ocaml_intrinsics.Int32.count_trailing_zeros n in
Int32.of_int n
let unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let f =
match op with
| Neg -> Int32.neg
| Not -> Int32.lognot
| Clz -> clz
| Ctz -> ctz
| _ -> Fmt.failwith {|unop: Unsupported i32 operator "%a"|} Ty.Unop.pp op
in
to_value (f (of_value 1 (`Unop op) v))
let binop op v1 v2 =
let f =
match op with
| Ty.Binop.Add -> Int32.add
| Sub -> Int32.sub
| Mul -> Int32.mul
| Div -> Int32.div
| DivU -> Int32.unsigned_div
| Rem -> Int32.rem
| RemU -> Int32.unsigned_rem
| And -> Int32.logand
| Or -> Int32.logor
| Xor -> Int32.logxor
| Shl -> shl
| ShrL -> shr_u
| ShrA -> shr_s
| Rotl -> rotl
| Rotr -> rotr
| _ ->
Fmt.failwith {|binop: Unsupported i32 operator "%a"|} Ty.Binop.pp op
in
to_value (f (of_value 1 (`Binop op) v1) (of_value 2 (`Binop op) v2))
let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let f =
match op with
| Lt -> Int32.Infix.( < )
| LtU -> lt_u
| Le -> Int32.Infix.( <= )
| LeU -> le_u
| Gt -> Int32.Infix.( > )
| GtU -> gt_u
| Ge -> Int32.Infix.( >= )
| GeU -> ge_u
| Eq | Ne -> assert false
in
f (of_value 1 (`Relop op) v1) (of_value 2 (`Relop op) v2)
end
module I64 = struct
let to_value (i : int64) : Value.t = Num (I64 i) [@@inline]
let of_value (n : int) (op : op_type) (v : Value.t) : int64 =
of_arg
(function Num (I64 i) -> i | _ -> raise_notrace (Value (Ty_bitv 64)))
n v op
[@@inline]
let cmp_u x op y = op Int64.(add x min_int) Int64.(add y min_int) [@@inline]
let lt_u x y = cmp_u x Int64.Infix.( < ) y [@@inline]
let le_u x y = cmp_u x Int64.Infix.( <= ) y [@@inline]
let gt_u x y = cmp_u x Int64.Infix.( > ) y [@@inline]
let ge_u x y = cmp_u x Int64.Infix.( >= ) y [@@inline]
let shift f x y = f x Int64.(to_int (logand y 63L)) [@@inline]
let shl x y = shift Int64.shift_left x y [@@inline]
let shr_s x y = shift Int64.shift_right x y [@@inline]
let shr_u x y = shift Int64.shift_right_logical x y [@@inline]
(* Stolen rotl and rotr from: *)
(* https://github.com/OCamlPro/owi/blob/main/src/int64.ml *)
(* We must mask the count to implement rotates via shifts. *)
let clamp_rotate_count n = Int64.(to_int (logand n (of_int 63))) [@@inline]
let rotl x y =
let n = clamp_rotate_count y in
Int64.logor (shl x (Int64.of_int n)) (shr_u x (Int64.of_int (64 - n)))
[@@inline]
let rotr x y =
let n = clamp_rotate_count y in
Int64.logor (shr_u x (Int64.of_int n)) (shl x (Int64.of_int (64 - n)))
[@@inline]
let clz n =
let n = Ocaml_intrinsics.Int64.count_leading_zeros n in
Int64.of_int n
let ctz n =
let n = Ocaml_intrinsics.Int64.count_trailing_zeros n in
Int64.of_int n
let unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let f =
match op with
| Neg -> Int64.neg
| Not -> Int64.lognot
| Clz -> clz
| Ctz -> ctz
| _ -> Fmt.failwith {|unop: Unsupported i64 operator "%a"|} Ty.Unop.pp op
in
to_value (f (of_value 1 (`Unop op) v))
let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let f =
match op with
| Add -> Int64.add
| Sub -> Int64.sub
| Mul -> Int64.mul
| Div -> Int64.div
| DivU -> Int64.unsigned_div
| Rem -> Int64.rem
| RemU -> Int64.unsigned_rem
| And -> Int64.logand
| Or -> Int64.logor
| Xor -> Int64.logxor
| Shl -> shl
| ShrL -> shr_u
| ShrA -> shr_s
| Rotl -> rotl
| Rotr -> rotr
| _ ->
Fmt.failwith {|binop: Unsupported i64 operator "%a"|} Ty.Binop.pp op
in
to_value (f (of_value 1 (`Binop op) v1) (of_value 2 (`Binop op) v2))
let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let f =
match op with
| Lt -> Int64.Infix.( < )
| LtU -> lt_u
| Le -> Int64.Infix.( <= )
| LeU -> le_u
| Gt -> Int64.Infix.( > )
| GtU -> gt_u
| Ge -> Int64.Infix.( >= )
| GeU -> ge_u
| Eq | Ne -> assert false
in
f (of_value 1 (`Relop op) v1) (of_value 2 (`Relop op) v2)
end
module F32 = struct
let to_float (v : int32) : float = Int32.float_of_bits v [@@inline]
let of_float (v : float) : int32 = Int32.bits_of_float v [@@inline]
let to_value (f : int32) : Value.t = Num (F32 f) [@@inline]
let to_value' (f : float) : Value.t = to_value @@ of_float f [@@inline]
let of_value (i : int) (op : op_type) (v : Value.t) : int32 =
of_arg
(function Num (F32 f) -> f | _ -> raise_notrace (Value (Ty_fp 32)))
i v op
[@@inline]
let of_value' (i : int) (op : op_type) (v : Value.t) : float =
of_value i op v |> to_float
[@@inline]
let unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let v = to_float @@ of_value 1 (`Unop op) v in
match op with
| Neg -> to_value' @@ Float.neg v
| Abs -> to_value' @@ Float.abs v
| Sqrt -> to_value' @@ Float.sqrt v
| Nearest -> to_value' @@ Float.round v
| Ceil -> to_value' @@ Float.ceil v
| Floor -> to_value' @@ Float.floor v
| Trunc -> to_value' @@ Float.trunc v
| Is_nan -> if Float.is_nan v then Value.True else Value.False
| _ -> Fmt.failwith {|unop: Unsupported f32 operator "%a"|} Ty.Unop.pp op
let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let f =
match op with
| Add -> Float.add
| Sub -> Float.sub
| Mul -> Float.mul
| Div -> Float.div
| Rem -> Float.rem
| Min -> Float.min
| Max -> Float.max
| _ ->
Fmt.failwith {|binop: Unsupported f32 operator "%a"|} Ty.Binop.pp op
in
to_value' (f (of_value' 1 (`Binop op) v1) (of_value' 2 (`Binop op) v2))
let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let f =
match op with
| Eq -> Float.Infix.( = )
| Ne -> Float.Infix.( <> )
| Lt -> Float.Infix.( < )
| Le -> Float.Infix.( <= )
| Gt -> Float.Infix.( > )
| Ge -> Float.Infix.( >= )
| _ ->
Fmt.failwith {|relop: Unsupported f32 operator "%a"|} Ty.Relop.pp op
in
f (of_value' 1 (`Relop op) v1) (of_value' 2 (`Relop op) v2)
end
module F64 = struct
let to_float (v : int64) : float = Int64.float_of_bits v [@@inline]
let of_float (v : float) : int64 = Int64.bits_of_float v [@@inline]
let to_value (f : int64) : Value.t = Num (F64 f) [@@inline]
let to_value' (f : float) : Value.t = to_value @@ of_float f [@@inline]
let of_value (i : int) (op : op_type) (v : Value.t) : int64 =
of_arg
(function Num (F64 f) -> f | _ -> raise_notrace (Value (Ty_fp 64)))
i v op
[@@inline]
let of_value' (i : int) (op : op_type) (v : Value.t) : float =
of_value i op v |> to_float
[@@inline]
let unop (op : Ty.Unop.t) (v : Value.t) : Value.t =
let v = of_value' 1 (`Unop op) v in
match op with
| Neg -> to_value' @@ Float.neg v
| Abs -> to_value' @@ Float.abs v
| Sqrt -> to_value' @@ Float.sqrt v
| Nearest -> to_value' @@ Float.round v
| Ceil -> to_value' @@ Float.ceil v
| Floor -> to_value' @@ Float.floor v
| Trunc -> to_value' @@ Float.trunc v
| Is_nan -> if Float.is_nan v then Value.True else Value.False
| _ -> Fmt.failwith {|unop: Unsupported f32 operator "%a"|} Ty.Unop.pp op
let binop (op : Ty.Binop.t) (v1 : Value.t) (v2 : Value.t) : Value.t =
let f =
match op with
| Add -> Float.add
| Sub -> Float.sub
| Mul -> Float.mul
| Div -> Float.div
| Rem -> Float.rem
| Min -> Float.min
| Max -> Float.max
| _ ->
Fmt.failwith {|binop: Unsupported f32 operator "%a"|} Ty.Binop.pp op
in
to_value' (f (of_value' 1 (`Binop op) v1) (of_value' 2 (`Binop op) v2))
let relop (op : Ty.Relop.t) (v1 : Value.t) (v2 : Value.t) : bool =
let f =
match op with
| Eq -> Float.Infix.( = )
| Ne -> Float.Infix.( <> )
| Lt -> Float.Infix.( < )
| Le -> Float.Infix.( <= )
| Gt -> Float.Infix.( > )
| Ge -> Float.Infix.( >= )
| _ ->
Fmt.failwith {|relop: Unsupported f32 operator "%a"|} Ty.Relop.pp op
in
f (of_value' 1 (`Relop op) v1) (of_value' 2 (`Relop op) v2)
end
module I32CvtOp = struct
let extend_s (n : int) (x : int32) : int32 =
let shift = 32 - n in
Int32.(shift_right (shift_left x shift) shift)
let trunc_f32_s (x : int32) =
if Int32.Infix.(x <> x) then raise ConversionToInteger
else
let xf = F32.to_float x in
if
Float.Infix.(
xf >= -.Int32.(to_float min_int) || xf < Int32.(to_float min_int) )
then raise IntegerOverflow
else Int32.of_float xf
let trunc_f32_u (x : int32) =
if Int32.Infix.(x <> x) then raise ConversionToInteger
else
let xf = F32.to_float x in
if Float.Infix.(xf >= -.Int32.(to_float min_int) *. 2.0 || xf <= -1.0)
then raise IntegerOverflow
else Int32.of_float xf
let trunc_f64_s (x : int64) =
if Int64.Infix.(x <> x) then raise ConversionToInteger
else
let xf = F64.to_float x in
if
Float.Infix.(
xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) )
then raise IntegerOverflow
else Int32.of_float xf
let trunc_f64_u (x : int64) =
if Int64.Infix.(x <> x) then raise ConversionToInteger
else
let xf = F64.to_float x in
if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0)
then raise IntegerOverflow
else Int32.of_float xf
let cvtop op v =
let op' = `Cvtop op in
match op with
| Ty.Cvtop.WrapI64 -> I32.to_value (Int64.to_int32 (I64.of_value 1 op' v))
| TruncSF32 -> I32.to_value (trunc_f32_s (F32.of_value 1 op' v))
| TruncUF32 -> I32.to_value (trunc_f32_u (F32.of_value 1 op' v))
| TruncSF64 -> I32.to_value (trunc_f64_s (F64.of_value 1 op' v))
| TruncUF64 -> I32.to_value (trunc_f64_u (F64.of_value 1 op' v))
| Reinterpret_float -> I32.to_value (F32.of_value 1 op' v)
| Sign_extend n -> I32.to_value (extend_s n (I32.of_value 1 op' v))
| Zero_extend _n -> I32.to_value (I32.of_value 1 op' v)
| OfBool -> v (* already a num here *)
| ToBool | _ ->
Fmt.failwith {|cvtop: Unsupported i32 operator "%a"|} Ty.Cvtop.pp op
end
module I64CvtOp = struct
(* let extend_s n x = *)
(* let shift = 64 - n in *)
(* Int64.(shift_right (shift_left x shift) shift) *)
let extend_i32_u (x : int32) =
Int64.(logand (of_int32 x) 0x0000_0000_ffff_ffffL)
let trunc_f32_s (x : int32) =
if Int32.Infix.(x <> x) then raise ConversionToInteger
else
let xf = F32.to_float x in
if
Float.Infix.(
xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) )
then raise IntegerOverflow
else Int64.of_float xf
let trunc_f32_u (x : int32) =
if Int32.Infix.(x <> x) then raise ConversionToInteger
else
let xf = F32.to_float x in
if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0)
then raise IntegerOverflow
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then
Int64.(logxor (of_float (xf -. 0x1p63)) min_int)
else Int64.of_float xf
let trunc_f64_s (x : int64) =
if Int64.Infix.(x <> x) then raise ConversionToInteger
else
let xf = F64.to_float x in
if
Float.Infix.(
xf >= -.Int64.(to_float min_int) || xf < Int64.(to_float min_int) )
then raise IntegerOverflow
else Int64.of_float xf
let trunc_f64_u (x : int64) =
if Int64.Infix.(x <> x) then raise ConversionToInteger
else
let xf = F64.to_float x in
if Float.Infix.(xf >= -.Int64.(to_float min_int) *. 2.0 || xf <= -1.0)
then raise IntegerOverflow
else if Float.Infix.(xf >= -.Int64.(to_float min_int)) then
Int64.(logxor (of_float (xf -. 0x1p63)) min_int)
else Int64.of_float xf
let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t =
let op' = `Cvtop op in
match op with
| Sign_extend 32 -> I64.to_value (Int64.of_int32 (I32.of_value 1 op' v))
| Zero_extend 32 -> I64.to_value (extend_i32_u (I32.of_value 1 op' v))
| TruncSF32 -> I64.to_value (trunc_f32_s (F32.of_value 1 op' v))
| TruncUF32 -> I64.to_value (trunc_f32_u (F32.of_value 1 op' v))
| TruncSF64 -> I64.to_value (trunc_f64_s (F64.of_value 1 op' v))
| TruncUF64 -> I64.to_value (trunc_f64_u (F64.of_value 1 op' v))
| Reinterpret_float -> I64.to_value (F64.of_value 1 op' v)
| WrapI64 ->
raise
(TypeError
{ index = 1; value = v; ty = Ty_bitv 64; op = `Cvtop WrapI64 } )
| ToBool | OfBool | _ ->
Fmt.failwith {|cvtop: Unsupported i64 operator "%a"|} Ty.Cvtop.pp op
end
module F32CvtOp = struct
let demote_f64 x =
let xf = F64.to_float x in
if Float.Infix.(xf = xf) then F32.of_float xf
else
let nan64bits = x in
let sign_field =
Int64.(shift_left (shift_right_logical nan64bits 63) 31)
in
let significand_field =
Int64.(shift_right_logical (shift_left nan64bits 12) 41)
in
let fields = Int64.logor sign_field significand_field in
Int32.logor 0x7fc0_0000l (Int64.to_int32 fields)
let convert_i32_s x = F32.of_float (Int32.to_float x)
let convert_i32_u x =
F32.of_float
Int32.(
Int32.Infix.(
if x >= 0l then to_float x
else to_float (logor (shift_right_logical x 1) (logand x 1l)) *. 2.0 ) )
let convert_i64_s x =
F32.of_float
Int64.(
Int64.Infix.(
if abs x < 0x10_0000_0000_0000L then to_float x
else
let r = if logand x 0xfffL = 0L then 0L else 1L in
to_float (logor (shift_right x 12) r) *. 0x1p12 ) )
let convert_i64_u x =
F32.of_float
Int64.(
Int64.Infix.(
if I64.lt_u x 0x10_0000_0000_0000L then to_float x
else
let r = if logand x 0xfffL = 0L then 0L else 1L in
to_float (logor (shift_right_logical x 12) r) *. 0x1p12 ) )
let cvtop (op : Ty.Cvtop.t) (v : Value.t) : Value.t =
let op' = `Cvtop op in
match op with
| DemoteF64 -> F32.to_value (demote_f64 (F64.of_value 1 op' v))
| ConvertSI32 -> F32.to_value (convert_i32_s (I32.of_value 1 op' v))
| ConvertUI32 -> F32.to_value (convert_i32_u (I32.of_value 1 op' v))
| ConvertSI64 -> F32.to_value (convert_i64_s (I64.of_value 1 op' v))
| ConvertUI64 -> F32.to_value (convert_i64_u (I64.of_value 1 op' v))
| Reinterpret_int -> F32.to_value (I32.of_value 1 op' v)
| PromoteF32 ->
raise
(TypeError
{ index = 1; value = v; ty = Ty_fp 32; op = `Cvtop PromoteF32 } )
| ToString | OfString | _ ->
Fmt.failwith {|cvtop: Unsupported f32 operator "%a"|} Ty.Cvtop.pp op
end
module F64CvtOp = struct
Float.is_nan
let promote_f32 x =
let xf = F32.to_float x in
if Float.Infix.(xf = xf) then F64.of_float xf
else
let nan32bits = I64CvtOp.extend_i32_u x in
let sign_field =
Int64.(shift_left (shift_right_logical nan32bits 31) 63)
in
let significand_field =
Int64.(shift_right_logical (shift_left nan32bits 41) 12)
in
let fields = Int64.logor sign_field significand_field in
Int64.logor 0x7ff8_0000_0000_0000L fields
let convert_i32_s x = F64.of_float (Int32.to_float x)
(*
* Unlike the other convert_u functions, the high half of the i32 range is
* within the range where f32 can represent odd numbers, so we can't do the
* shift. Instead, we can use int64 signed arithmetic.
*)
let convert_i32_u x =
F64.of_float Int64.(to_float (logand (of_int32 x) 0x0000_0000_ffff_ffffL))
let convert_i64_s x = F64.of_float (Int64.to_float x)
(*
* Values in the low half of the int64 range can be converted with a signed
* conversion. The high half is beyond the range where f64 can represent odd
* numbers, so we can shift the value right, adjust the least significant
* bit to round correctly, do a conversion, and then scale it back up.
*)
let convert_i64_u (x : int64) =
F64.of_float
Int64.(
Int64.Infix.(
if x >= 0L then to_float x
else to_float (logor (shift_right_logical x 1) (logand x 1L)) *. 2.0 ) )
let cvtop (op : Ty.Cvtop.t) v : Value.t =
let op' = `Cvtop op in
match op with
| PromoteF32 -> F64.to_value (promote_f32 (F32.of_value 1 op' v))
| ConvertSI32 -> F64.to_value (convert_i32_s (I32.of_value 1 op' v))
| ConvertUI32 -> F64.to_value (convert_i32_u (I32.of_value 1 op' v))
| ConvertSI64 -> F64.to_value (convert_i64_s (I64.of_value 1 op' v))
| ConvertUI64 -> F64.to_value (convert_i64_u (I64.of_value 1 op' v))
| Reinterpret_int -> F64.to_value (I64.of_value 1 op' v)
| DemoteF64 ->
raise
(TypeError
{ index = 1; value = v; ty = Ty_bitv 64; op = `Cvtop DemoteF64 } )
| ToString | OfString | _ ->
Fmt.failwith {|cvtop: Unsupported f64 operator "%a"|} Ty.Cvtop.pp op
end
(* Dispatch *)
let op int real bool str lst i32 i64 f32 f64 ty op =
match ty with
| Ty.Ty_int -> int op
| Ty_real -> real op
| Ty_bool -> bool op
| Ty_str -> str op
| Ty_list -> lst op
| Ty_bitv 32 -> i32 op
| Ty_bitv 64 -> i64 op
| Ty_fp 32 -> f32 op
| Ty_fp 64 -> f64 op
| Ty_bitv _ | Ty_fp _ | Ty_app | Ty_unit | Ty_none | Ty_regexp -> assert false
[@@inline]
let unop =
op Int.unop Real.unop Bool.unop Str.unop Lst.unop I32.unop I64.unop F32.unop
F64.unop
let binop =
op Int.binop Real.binop Bool.binop Str.binop Lst.binop I32.binop I64.binop
F32.binop F64.binop
let triop = function
| Ty.Ty_bool -> Bool.triop
| Ty_str -> Str.triop
| Ty_list -> Lst.triop
| _ -> assert false
let relop = function
| Ty.Ty_int -> Int.relop
| Ty_real -> Real.relop
| Ty_bool -> Bool.relop
| Ty_str -> Str.relop
| Ty_bitv 32 -> I32.relop
| Ty_bitv 64 -> I64.relop
| Ty_fp 32 -> F32.relop
| Ty_fp 64 -> F64.relop
| _ -> assert false
let cvtop = function
| Ty.Ty_int -> Int.cvtop
| Ty_real -> Real.cvtop
| Ty_bool -> Bool.cvtop
| Ty_str -> Str.cvtop
| Ty_bitv 32 -> I32CvtOp.cvtop
| Ty_bitv 64 -> I64CvtOp.cvtop
| Ty_fp 32 -> F32CvtOp.cvtop
| Ty_fp 64 -> F64CvtOp.cvtop
| _ -> assert false
let naryop = function
| Ty.Ty_bool -> Bool.naryop
| Ty_str -> Str.naryop
| Ty_list -> Lst.naryop
| _ -> assert false