1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
(* SPDX-License-Identifier: MIT *)
(* Copyright (C) 2023-2024 formalsec *)
(* Written by the Smtml programmers *)

include Mappings_intf

module Make (M_with_make : M_with_make) : S_with_fresh = struct
  module Make_ (M : M) : S = struct
    open Ty
    module Smap = Map.Make (Symbol)

    type symbol_ctx = M.term Smap.t

    type model =
      { model : M.model
      ; ctx : symbol_ctx
      }

    type solver =
      { solver : M.solver
      ; ctx : symbol_ctx Stack.t
      ; mutable last_ctx :
          symbol_ctx option (* Used to save last check-sat ctx *)
      }

    type handle = M.handle

    type optimize =
      { opt : M.optimizer
      ; ctx : symbol_ctx Stack.t
      }

    let i8 = M.Types.bitv 8

    let i32 = M.Types.bitv 32

    let i64 = M.Types.bitv 64

    let f32 = M.Types.float 8 24

    let f64 = M.Types.float 11 53

    let int2str = M.Func.make "int_to_string" [ M.Types.int ] M.Types.string

    let str2int = M.Func.make "string_to_int" [ M.Types.string ] M.Types.int

    let real2str = M.Func.make "real_to_string " [ M.Types.real ] M.Types.string

    let str2real = M.Func.make "string_to_real" [ M.Types.string ] M.Types.real

    let str_trim = M.Func.make "string_trim" [ M.Types.string ] M.Types.string

    let get_type = function
      | Ty_int -> M.Types.int
      | Ty_real -> M.Types.real
      | Ty_bool -> M.Types.bool
      | Ty_str -> M.Types.string
      | Ty_bitv 8 -> i8
      | Ty_bitv 32 -> i32
      | Ty_bitv 64 -> i64
      | Ty_bitv n -> M.Types.bitv n
      | Ty_fp 32 -> f32
      | Ty_fp 64 -> f64
      | (Ty_fp _ | Ty_list | Ty_app | Ty_unit | Ty_none | Ty_regexp) as ty ->
        Fmt.failwith "Unsupported theory: %a@." Ty.pp ty

    let make_symbol (ctx : symbol_ctx) (s : Symbol.t) : symbol_ctx * M.term =
      let name = match s.name with Simple name -> name | _ -> assert false in
      if M.caches_consts then
        let sym = M.const name (get_type s.ty) in
        (Smap.add s sym ctx, sym)
      else
        match Smap.find_opt s ctx with
        | Some sym -> (ctx, sym)
        | None ->
          let sym = M.const name (get_type s.ty) in
          (Smap.add s sym ctx, sym)

    module Bool_impl = struct
      let true_ = M.true_

      let false_ = M.false_

      let unop = function
        | Not -> M.not_
        | op ->
          Fmt.failwith {|Bool: Unsupported Z3 unop operator "%a"|} Ty.pp_unop op

      let binop = function
        | And -> M.and_
        | Or -> M.or_
        | Xor -> M.xor
        | op ->
          Fmt.failwith {|Bool: Unsupported Z3 binop operator "%a"|} Ty.pp_binop
            op

      let triop = function
        | Ite -> M.ite
        | op ->
          Fmt.failwith {|Bool: Unsupported Z3 triop operator "%a"|} Ty.pp_triop
            op

      let relop op e1 e2 =
        match op with
        | Eq -> M.eq e1 e2
        | Ne -> M.distinct [ e1; e2 ]
        | _ ->
          Fmt.failwith {|Bool: Unsupported Z3 relop operator "%a"|} Ty.pp_relop
            op

      let naryop op l =
        match op with
        | Logand -> M.logand l
        | Logor -> M.logor l
        | _ ->
          Fmt.failwith {|Bool: Unsupported Z3 naryop operator "%a"|}
            Ty.pp_naryop op

      let cvtop _op _e = assert false
    end

    module Int_impl = struct
      let v i = M.int i [@@inline]

      let unop = function
        | Neg -> M.Int.neg
        | op ->
          Fmt.failwith {|Int: Unsupported unop operator "%a"|} Ty.pp_unop op

      let binop = function
        | Add -> M.Int.add
        | Sub -> M.Int.sub
        | Mul -> M.Int.mul
        | Div -> M.Int.div
        | Rem -> M.Int.rem
        | Pow -> M.Int.pow
        | op ->
          Fmt.failwith {|Int: Unsupported binop operator "%a"|} Ty.pp_binop op

      let relop = function
        | Eq | Ne -> assert false
        | Lt -> M.Int.lt
        | Gt -> M.Int.gt
        | Le -> M.Int.le
        | Ge -> M.Int.ge
        | op ->
          Fmt.failwith {|Int: Unsupported relop operator "%a"|} Ty.pp_relop op

      let cvtop op e =
        match op with
        | ToString -> M.Func.apply int2str [ e ]
        | OfString -> M.Func.apply str2int [ e ]
        | Reinterpret_float -> M.Real.to_int e
        | op ->
          Fmt.failwith {|Int: Unsupported cvtop operator "%a"|} Ty.pp_cvtop op
    end

    module Real_impl = struct
      let v f = M.real f [@@inline]

      let unop op e =
        let open M in
        match op with
        | Neg -> Real.neg e
        | Abs -> ite (Real.gt e (real 0.)) e (Real.neg e)
        | Sqrt -> Real.pow e (v 0.5)
        | Ceil ->
          let x_int = M.Real.to_int e in
          ite (eq (Int.to_real x_int) e) x_int (Int.add x_int (int 1))
        | Floor -> Real.to_int e
        | Nearest | Is_nan | _ ->
          Fmt.failwith {|Real: Unsupported unop operator "%a"|} Ty.pp_unop op

      let binop op e1 e2 =
        match op with
        | Add -> M.Real.add e1 e2
        | Sub -> M.Real.sub e1 e2
        | Mul -> M.Real.mul e1 e2
        | Div -> M.Real.div e1 e2
        | Pow -> M.Real.pow e1 e2
        | Min -> M.ite (M.Real.le e1 e2) e1 e2
        | Max -> M.ite (M.Real.ge e1 e2) e1 e2
        | _ ->
          Fmt.failwith {|Real: Unsupported binop operator "%a"|} Ty.pp_binop op

      let relop op e1 e2 =
        match op with
        | Eq -> M.eq e1 e2
        | Ne -> M.distinct [ e1; e2 ]
        | Lt -> M.Real.lt e1 e2
        | Gt -> M.Real.gt e1 e2
        | Le -> M.Real.le e1 e2
        | Ge -> M.Real.ge e1 e2
        | _ ->
          Fmt.failwith {|Real: Unsupported relop operator "%a"|} Ty.pp_relop op

      let cvtop op e =
        match op with
        | ToString -> M.Func.apply real2str [ e ]
        | OfString -> M.Func.apply str2real [ e ]
        | Reinterpret_int -> M.Int.to_real e
        | op ->
          Fmt.failwith {|Real: Unsupported cvtop operator "%a"|} Ty.pp_cvtop op
    end

    module String_impl = struct
      let v s = M.String.v s [@@inline]

      let unop op e =
        match op with
        | Length -> M.String.length e
        | Trim -> M.Func.apply str_trim [ e ]
        | op ->
          Fmt.failwith {|String: Unsupported unop operator "%a"|} Ty.pp_unop op

      let binop op e1 e2 =
        match op with
        | At -> M.String.at e1 ~pos:e2
        | String_contains -> M.String.contains e1 ~sub:e2
        | String_prefix -> M.String.is_prefix e1 ~prefix:e2
        | String_suffix -> M.String.is_suffix e1 ~suffix:e2
        | String_in_re -> M.String.in_re e1 e2
        | _ ->
          Fmt.failwith {|String: Unsupported binop operator "%a"|} Ty.pp_binop
            op

      let triop op e1 e2 e3 =
        match op with
        | String_extract -> M.String.sub e1 ~pos:e2 ~len:e3
        | String_index -> M.String.index_of e1 ~sub:e2 ~pos:e3
        | String_replace -> M.String.replace e1 ~pattern:e2 ~with_:e3
        | _ ->
          Fmt.failwith {|String: Unsupported triop operator "%a"|} Ty.pp_triop
            op

      let relop op e1 e2 =
        match op with
        | Eq -> M.eq e1 e2
        | Ne -> M.distinct [ e1; e2 ]
        | Lt -> M.String.lt e1 e2
        | Le -> M.String.le e1 e2
        | _ ->
          Fmt.failwith {|String: Unsupported relop operator "%a"|} Ty.pp_relop
            op

      let cvtop = function
        | String_to_code -> M.String.to_code
        | String_from_code -> M.String.of_code
        | String_to_int -> M.String.to_int
        | String_from_int -> M.String.of_int
        | String_to_re -> M.String.to_re
        | op ->
          Fmt.failwith {|String: Unsupported cvtop operator "%a"|} Ty.pp_cvtop
            op

      let naryop op es =
        match op with
        | Concat -> M.String.concat es
        | _ ->
          Fmt.failwith {|String: Unsupported naryop operator "%a"|} Ty.pp_naryop
            op
    end

    module Regexp_impl = struct
      let unop op e =
        match op with
        | Regexp_star -> M.Re.star e
        | Regexp_plus -> M.Re.plus e
        | Regexp_opt -> M.Re.opt e
        | Regexp_comp -> M.Re.comp e
        | Regexp_loop (i1, i2) -> M.Re.loop e i1 i2
        | op ->
          Fmt.failwith {|Regexp: Unsupported unop operator "%a"|} Ty.pp_unop op

      let binop op e1 e2 =
        match op with
        | Regexp_range -> M.Re.range e1 e2
        | op ->
          Fmt.failwith {|Regexp: Unsupported binop operator "%a"|} Ty.pp_binop
            op

      let _triop _ = function
        | op ->
          Fmt.failwith {|Regexp: Unsupported triop operator "%a"|} Ty.pp_triop
            op

      let _relop _ _ = function
        | op ->
          Fmt.failwith {|Regexp: Unsupported relop operator "%a"|} Ty.pp_relop
            op

      let _cvtop = function
        | op ->
          Fmt.failwith {|Regexp: Unsupported cvtop operator "%a"|} Ty.pp_cvtop
            op

      let naryop op es =
        match op with
        | Concat -> M.Re.concat es
        | Regexp_union -> M.Re.union es
        | op ->
          Fmt.failwith {|Regexp: Unsupported naryop operator "%a"|} Ty.pp_naryop
            op
    end

    module type Bitv_sig = sig
      type elt

      val v : elt -> M.term

      val bitwidth : int

      module Ixx : sig
        val of_int : int -> elt

        val shift_left : elt -> int -> elt
      end
    end

    module Bitv_impl (B : Bitv_sig) = struct
      open M
      include B

      (* Stolen from @krtab in OCamlPro/owi#195 *)
      let clz n =
        let rec loop (lb : int) (ub : int) =
          if ub = lb + 1 then v @@ Ixx.of_int (bitwidth - ub)
          else
            let mid = (lb + ub) / 2 in
            let pow_two_mid = v Ixx.(shift_left (of_int 1) mid) in
            ite (Bitv.lt_u n pow_two_mid) (loop lb mid) (loop mid ub)
        in
        ite
          (eq n (v @@ Ixx.of_int 0))
          (v @@ Ixx.of_int bitwidth)
          (loop 0 bitwidth)

      (* Stolen from @krtab in OCamlPro/owi #195 *)
      let ctz n =
        let zero = v (Ixx.of_int 0) in
        let rec loop (lb : int) (ub : int) =
          if ub = lb + 1 then v (Ixx.of_int lb)
          else
            let mid = (lb + ub) / 2 in
            let pow_two_mid = v Ixx.(shift_left (of_int 1) mid) in
            M.ite (eq (Bitv.rem n pow_two_mid) zero) (loop mid ub) (loop lb mid)
        in
        ite (eq n zero) (v @@ Ixx.of_int bitwidth) (loop 0 bitwidth)

      let unop = function
        | Clz -> clz
        | Ctz -> ctz
        | Neg -> Bitv.neg
        | Not -> Bitv.lognot
        | op ->
          Fmt.failwith {|Bitv: Unsupported unary operator "%a"|} Ty.pp_unop op

      let binop = function
        | Add -> Bitv.add
        | Sub -> Bitv.sub
        | Mul -> Bitv.mul
        | Div -> Bitv.div
        | DivU -> Bitv.div_u
        | And -> Bitv.logand
        | Xor -> Bitv.logxor
        | Or -> Bitv.logor
        | Shl -> Bitv.shl
        | ShrA -> Bitv.ashr
        | ShrL -> Bitv.lshr
        | Rem -> Bitv.rem
        | RemU -> Bitv.rem_u
        | Rotl -> Bitv.rotate_left
        | Rotr -> Bitv.rotate_right
        | op ->
          Fmt.failwith {|Bitv: Unsupported binary operator "%a"|} Ty.pp_binop op

      let triop op _ =
        Fmt.failwith {|Bitv: Unsupported triop operator "%a"|} Ty.pp_triop op

      let relop op e1 e2 =
        match op with
        | Eq | Ne -> assert false
        | Lt -> Bitv.lt e1 e2
        | LtU -> Bitv.lt_u e1 e2
        | Le -> Bitv.le e1 e2
        | LeU -> Bitv.le_u e1 e2
        | Gt -> Bitv.gt e1 e2
        | GtU -> Bitv.gt_u e1 e2
        | Ge -> Bitv.ge e1 e2
        | GeU -> Bitv.ge_u e1 e2

      let cvtop op e =
        match op with
        | WrapI64 -> Bitv.extract e ~high:(bitwidth - 1) ~low:0
        | Sign_extend n -> Bitv.sign_extend n e
        | Zero_extend n -> Bitv.zero_extend n e
        | TruncSF32 | TruncSF64 ->
          Float.to_sbv bitwidth ~rm:Float.Rounding_mode.rtz e
        | TruncUF32 | TruncUF64 ->
          Float.to_ubv bitwidth ~rm:Float.Rounding_mode.rtz e
        | Reinterpret_float -> Float.to_ieee_bv e
        | ToBool -> M.distinct [ e; v @@ Ixx.of_int 0 ]
        | OfBool -> ite e (v @@ Ixx.of_int 1) (v @@ Ixx.of_int 0)
        | _ -> assert false
    end

    module I8 = Bitv_impl (struct
      type elt = int

      let v i = M.Bitv.v (string_of_int i) 8

      let bitwidth = 8

      module Ixx = struct
        let of_int i = i [@@inline]

        let shift_left v i = v lsl i [@@inline]
      end
    end)

    module I32 = Bitv_impl (struct
      type elt = int32

      let v i = M.Bitv.v (Int32.to_string i) 32

      let bitwidth = 32

      module Ixx = Int32
    end)

    module I64 = Bitv_impl (struct
      type elt = int64

      let v i = M.Bitv.v (Int64.to_string i) 64

      let bitwidth = 64

      module Ixx = Int64
    end)

    module type Float_sig = sig
      type elt

      val eb : int

      val sb : int

      val v : elt -> M.term
      (* TODO: *)
      (* val to_string : Z3.FuncDecl.func_decl *)
      (* val of_string : Z3.FuncDecl.func_decl *)
    end

    module Float_impl (F : Float_sig) = struct
      open M
      include F

      let unop op e =
        match op with
        | Neg -> Float.neg e
        | Abs -> Float.abs e
        | Sqrt -> Float.sqrt ~rm:Float.Rounding_mode.rne e
        | Is_nan -> Float.is_nan e
        | Ceil -> Float.round_to_integral ~rm:Float.Rounding_mode.rtp e
        | Floor -> Float.round_to_integral ~rm:Float.Rounding_mode.rtn e
        | Trunc -> Float.round_to_integral ~rm:Float.Rounding_mode.rtz e
        | Nearest -> Float.round_to_integral ~rm:Float.Rounding_mode.rne e
        | _ ->
          Fmt.failwith {|Fp: Unsupported Z3 unary operator "%a"|} Ty.pp_unop op

      let binop op e1 e2 =
        match op with
        | Add -> Float.add ~rm:Float.Rounding_mode.rne e1 e2
        | Sub -> Float.sub ~rm:Float.Rounding_mode.rne e1 e2
        | Mul -> Float.mul ~rm:Float.Rounding_mode.rne e1 e2
        | Div -> Float.div ~rm:Float.Rounding_mode.rne e1 e2
        | Min -> Float.min e1 e2
        | Max -> Float.max e1 e2
        | Rem -> Float.rem e1 e2
        | _ ->
          Fmt.failwith {|Fp: Unsupported Z3 binop operator "%a"|} Ty.pp_binop op

      let triop op _ =
        Fmt.failwith {|Fp: Unsupported Z3 triop operator "%a"|} Ty.pp_triop op

      let relop op e1 e2 =
        match op with
        | Eq -> Float.eq e1 e2
        | Ne -> not_ @@ Float.eq e1 e2
        | Lt -> Float.lt e1 e2
        | Le -> Float.le e1 e2
        | Gt -> Float.gt e1 e2
        | Ge -> Float.ge e1 e2
        | _ ->
          Fmt.failwith {|Fp: Unsupported Z3 relop operator "%a"|} Ty.pp_relop op

      let cvtop op e =
        match op with
        | PromoteF32 | DemoteF64 ->
          Float.to_fp eb sb ~rm:Float.Rounding_mode.rne e
        | ConvertSI32 | ConvertSI64 ->
          Float.sbv_to_fp eb sb ~rm:Float.Rounding_mode.rne e
        | ConvertUI32 | ConvertUI64 ->
          Float.ubv_to_fp eb sb ~rm:Float.Rounding_mode.rne e
        | Reinterpret_int -> Float.of_ieee_bv eb sb e
        | ToString ->
          (* TODO: FuncDecl.apply to_string [ e ] *)
          assert false
        | OfString ->
          (* TODO: FuncDecl.apply of_string [ e ] *)
          assert false
        | _ ->
          Fmt.failwith {|Fp: Unsupported Z3 cvtop operator "%a"|} Ty.pp_cvtop op
    end

    module Float32_impl = Float_impl (struct
      type elt = int32

      let eb = 8

      let sb = 24

      let v f = M.Float.v (Int32.float_of_bits f) eb sb

      (* TODO: *)
      (* let to_string = *)
      (*   Z3.FuncDecl.mk_func_decl_s ctx "F32ToString" [ fp32_sort ] str_sort *)
      (* let of_string = *)
      (*   Z3.FuncDecl.mk_func_decl_s ctx "StringToF32" [ str_sort ] fp32_sort *)
    end)

    module Float64_impl = Float_impl (struct
      type elt = int64

      let eb = 11

      let sb = 53

      let v f = M.Float.v (Int64.float_of_bits f) eb sb

      (* TODO: *)
      (* let to_string = *)
      (*   Z3.FuncDecl.mk_func_decl_s ctx "F64ToString" [ fp64_sort ] str_sort *)
      (* let of_string = *)
      (*   Z3.FuncDecl.mk_func_decl_s ctx "StringToF64" [ str_sort ] fp64_sort *)
    end)

    let v : Value.t -> M.term = function
      | True -> Bool_impl.true_
      | False -> Bool_impl.false_
      | Int v -> Int_impl.v v
      | Real v -> Real_impl.v v
      | Str v -> String_impl.v v
      | Num (I8 x) -> I8.v x
      | Num (I32 x) -> I32.v x
      | Num (I64 x) -> I64.v x
      | Num (F32 x) -> Float32_impl.v x
      | Num (F64 x) -> Float64_impl.v x
      | List _ | App _ | Unit | Nothing -> assert false

    let unop = function
      | Ty.Ty_int -> Int_impl.unop
      | Ty.Ty_real -> Real_impl.unop
      | Ty.Ty_bool -> Bool_impl.unop
      | Ty.Ty_str -> String_impl.unop
      | Ty.Ty_regexp -> Regexp_impl.unop
      | Ty.Ty_bitv 8 -> I8.unop
      | Ty.Ty_bitv 32 -> I32.unop
      | Ty.Ty_bitv 64 -> I64.unop
      | Ty.Ty_fp 32 -> Float32_impl.unop
      | Ty.Ty_fp 64 -> Float64_impl.unop
      | Ty.Ty_bitv _ | Ty_fp _ | Ty_list | Ty_app | Ty_unit | Ty_none ->
        assert false

    let binop = function
      | Ty.Ty_int -> Int_impl.binop
      | Ty.Ty_real -> Real_impl.binop
      | Ty.Ty_bool -> Bool_impl.binop
      | Ty.Ty_str -> String_impl.binop
      | Ty.Ty_regexp -> Regexp_impl.binop
      | Ty.Ty_bitv 8 -> I8.binop
      | Ty.Ty_bitv 32 -> I32.binop
      | Ty.Ty_bitv 64 -> I64.binop
      | Ty.Ty_fp 32 -> Float32_impl.binop
      | Ty.Ty_fp 64 -> Float64_impl.binop
      | Ty.Ty_bitv _ | Ty_fp _ | Ty_list | Ty_app | Ty_unit | Ty_none ->
        assert false

    let triop = function
      | Ty.Ty_int | Ty.Ty_real -> assert false
      | Ty.Ty_bool -> Bool_impl.triop
      | Ty.Ty_str -> String_impl.triop
      | Ty.Ty_bitv 8 -> I8.triop
      | Ty.Ty_bitv 32 -> I32.triop
      | Ty.Ty_bitv 64 -> I64.triop
      | Ty.Ty_fp 32 -> Float32_impl.triop
      | Ty.Ty_fp 64 -> Float64_impl.triop
      | Ty.Ty_bitv _ | Ty_fp _ | Ty_list | Ty_app | Ty_unit | Ty_none
      | Ty_regexp ->
        assert false

    let relop = function
      | Ty.Ty_int -> Int_impl.relop
      | Ty.Ty_real -> Real_impl.relop
      | Ty.Ty_bool -> Bool_impl.relop
      | Ty.Ty_str -> String_impl.relop
      | Ty.Ty_bitv 8 -> I8.relop
      | Ty.Ty_bitv 32 -> I32.relop
      | Ty.Ty_bitv 64 -> I64.relop
      | Ty.Ty_fp 32 -> Float32_impl.relop
      | Ty.Ty_fp 64 -> Float64_impl.relop
      | Ty.Ty_bitv _ | Ty_fp _ | Ty_list | Ty_app | Ty_unit | Ty_none
      | Ty_regexp ->
        assert false

    let cvtop = function
      | Ty.Ty_int -> Int_impl.cvtop
      | Ty.Ty_real -> Real_impl.cvtop
      | Ty.Ty_bool -> Bool_impl.cvtop
      | Ty.Ty_str -> String_impl.cvtop
      | Ty.Ty_bitv 8 -> I8.cvtop
      | Ty.Ty_bitv 32 -> I32.cvtop
      | Ty.Ty_bitv 64 -> I64.cvtop
      | Ty.Ty_fp 32 -> Float32_impl.cvtop
      | Ty.Ty_fp 64 -> Float64_impl.cvtop
      | Ty.Ty_bitv _ | Ty_fp _ | Ty_list | Ty_app | Ty_unit | Ty_none
      | Ty_regexp ->
        assert false

    let naryop = function
      | Ty.Ty_str -> String_impl.naryop
      | Ty.Ty_bool -> Bool_impl.naryop
      | Ty.Ty_regexp -> Regexp_impl.naryop
      | ty -> Fmt.failwith "Naryop for type \"%a\" not implemented" Ty.pp ty

    let rec encode_expr ctx (hte : Expr.t) : symbol_ctx * M.term =
      match Expr.view hte with
      | Val value -> (ctx, v value)
      | Ptr { base; offset } ->
        let base' = v (Num (I32 base)) in
        let ctx, offset' = encode_expr ctx offset in
        (ctx, I32.binop Add base' offset')
      | Symbol sym -> make_symbol ctx sym
      | Unop (ty, op, e) ->
        let ctx, e = encode_expr ctx e in
        (ctx, unop ty op e)
      | Binop (ty, op, e1, e2) ->
        let ctx, e1 = encode_expr ctx e1 in
        let ctx, e2 = encode_expr ctx e2 in
        (ctx, binop ty op e1 e2)
      | Triop (ty, op, e1, e2, e3) ->
        let ctx, e1 = encode_expr ctx e1 in
        let ctx, e2 = encode_expr ctx e2 in
        let ctx, e3 = encode_expr ctx e3 in
        (ctx, triop ty op e1 e2 e3)
      | Relop (ty, op, e1, e2) ->
        let ctx, e1 = encode_expr ctx e1 in
        let ctx, e2 = encode_expr ctx e2 in
        (ctx, relop ty op e1 e2)
      | Cvtop (ty, op, e) ->
        let ctx, e = encode_expr ctx e in
        (ctx, cvtop ty op e)
      | Naryop (ty, op, es) ->
        let ctx, es =
          List.fold_left
            (fun (ctx, es) e ->
              let ctx, e = encode_expr ctx e in
              (ctx, e :: es) )
            (ctx, []) es
        in
        (ctx, naryop ty op es)
      | Extract (e, h, l) ->
        let ctx, e = encode_expr ctx e in
        (ctx, M.Bitv.extract e ~high:((h * 8) - 1) ~low:(l * 8))
      | Concat (e1, e2) ->
        let ctx, e1 = encode_expr ctx e1 in
        let ctx, e2 = encode_expr ctx e2 in
        (ctx, M.Bitv.concat e1 e2)
      | List _ | App _ | Binder _ -> assert false

    let encode_exprs ctx (es : Expr.t list) : symbol_ctx * M.term list =
      List.fold_left
        (fun (ctx, es) e ->
          let ctx, e = encode_expr ctx e in
          (ctx, e :: es) )
        (ctx, []) es

    let value_of_term model ty term =
      let v = M.Model.eval ~completion:true model term |> Option.get in
      match ty with
      | Ty_int -> Value.Int (M.Interp.to_int v)
      | Ty_real -> Value.Real (M.Interp.to_real v)
      | Ty_bool -> if M.Interp.to_bool v then Value.True else Value.False
      | Ty_str ->
        let str = M.Interp.to_string v in
        Value.Str str
      | Ty_bitv 1 ->
        let b = M.Interp.to_bitv v 1 in
        if Int64.equal b 1L then Value.True
        else (
          assert (Int64.equal b 0L);
          Value.False )
      | Ty_bitv 8 ->
        let i8 = M.Interp.to_bitv v 8 in
        Value.Num (I8 (Int64.to_int i8))
      | Ty_bitv 32 ->
        let i32 = M.Interp.to_bitv v 32 in
        Value.Num (I32 (Int64.to_int32 i32))
      | Ty_bitv 64 ->
        let i64 = M.Interp.to_bitv v 64 in
        Value.Num (I64 i64)
      | Ty_fp 32 ->
        let float = M.Interp.to_float v 8 24 in
        Value.Num (F32 (Int32.bits_of_float float))
      | Ty_fp 64 ->
        let float = M.Interp.to_float v 11 53 in
        Value.Num (F64 (Int64.bits_of_float float))
      | Ty_bitv _ | Ty_fp _ | Ty_list | Ty_app | Ty_unit | Ty_none | Ty_regexp
        ->
        assert false

    let value ({ model = m; ctx } : model) (c : Expr.t) : Value.t =
      let _, e = encode_expr ctx c in
      value_of_term m (Expr.ty c) e

    let values_of_model ?symbols ({ model; ctx } as model0) =
      let m = Hashtbl.create 512 in
      ( match symbols with
      | Some symbols ->
        List.iter
          (fun sym ->
            let v = value model0 (Expr.symbol sym) in
            Hashtbl.replace m sym v )
          symbols
      | None ->
        Smap.iter
          (fun (sym : Symbol.t) term ->
            let v = value_of_term model sym.ty term in
            Hashtbl.replace m sym v )
          ctx );
      m

    let set_debug _ = ()

    module Smtlib = struct
      let pp ?name ?logic ?status fmt htes =
        (* FIXME: I don't know if encoding with the empty map is ok :\ *)
        let _, terms = encode_exprs Smap.empty htes in
        M.Smtlib.pp ?name ?logic ?status fmt terms
    end

    module Solver = struct
      let make ?params ?logic () =
        let ctx = Stack.create () in
        Stack.push Smap.empty ctx;
        { solver = M.Solver.make ?params ?logic (); ctx; last_ctx = None }

      let clone { solver; ctx; last_ctx } =
        { solver = M.Solver.clone solver; ctx = Stack.copy ctx; last_ctx }

      let push { solver; ctx; _ } =
        let top = Stack.top ctx in
        Stack.push top ctx;
        M.Solver.push solver

      let pop { solver; ctx; _ } n =
        let _ = Stack.pop ctx in
        M.Solver.pop solver n

      let reset (s : solver) =
        Stack.clear s.ctx;
        Stack.push Smap.empty s.ctx;
        s.last_ctx <- None;
        M.Solver.reset s.solver

      let add (s : solver) (exprs : Expr.t list) =
        let ctx = Stack.pop s.ctx in
        let ctx, exprs = encode_exprs ctx exprs in
        Stack.push ctx s.ctx;
        M.Solver.add s.solver exprs

      let check (s : solver) ~assumptions =
        let ctx = Stack.top s.ctx in
        let ctx, assumptions = encode_exprs ctx assumptions in
        s.last_ctx <- Some ctx;
        M.Solver.check s.solver ~assumptions

      let model { solver; last_ctx; _ } =
        match last_ctx with
        | Some ctx ->
          M.Solver.model solver |> Option.map (fun m -> { model = m; ctx })
        | None ->
          Fmt.failwith "model: Trying to fetch model berfore check-sat call"

      let add_simplifier s =
        { s with solver = M.Solver.add_simplifier s.solver }

      let interrupt _ = M.Solver.interrupt ()

      let get_statistics { solver; _ } = M.Solver.get_statistics solver
    end

    module Optimizer = struct
      let make () =
        let ctx = Stack.create () in
        Stack.push Smap.empty ctx;
        { opt = M.Optimizer.make (); ctx }

      let push { opt; _ } = M.Optimizer.push opt

      let pop { opt; _ } = M.Optimizer.pop opt

      let add (o : optimize) exprs =
        let ctx = Stack.pop o.ctx in
        let ctx, exprs = encode_exprs ctx exprs in
        Stack.push ctx o.ctx;
        M.Optimizer.add o.opt exprs

      let check { opt; _ } = M.Optimizer.check opt

      let model { opt; ctx } =
        let ctx = Stack.top ctx in
        M.Optimizer.model opt |> Option.map (fun m -> { model = m; ctx })

      let maximize (o : optimize) (expr : Expr.t) =
        let ctx = Stack.pop o.ctx in
        let ctx, expr = encode_expr ctx expr in
        Stack.push ctx o.ctx;
        M.Optimizer.maximize o.opt expr

      let minimize (o : optimize) (expr : Expr.t) =
        let ctx = Stack.pop o.ctx in
        let ctx, expr = encode_expr ctx expr in
        Stack.push ctx o.ctx;
        M.Optimizer.minimize o.opt expr

      let interrupt _ = M.Optimizer.interrupt ()

      let get_statistics { opt; _ } = M.Optimizer.get_statistics opt
    end
  end

  module Fresh = struct
    module Make () = Make_ (M_with_make.Make ())
  end

  let is_available = M_with_make.is_available

  include Make_ (M_with_make)
end