1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
(* SPDX-License-Identifier: MIT *)
(* Copyright (C) 2023-2024 formalsec *)
(* Written by the Smtml programmers *)
open Dolmen
module Loc = Std.Loc
let custom_sorts = Hashtbl.create 10
let pp_loc fmt = function
| None -> ()
| Some loc -> Fmt.pf fmt "%a: " Loc.print_compact loc
module Term = struct
type t = Expr.t
let const ?loc (id : Symbol.t) : t =
match (Symbol.namespace id, Symbol.name id) with
| Sort, Simple name -> (
match name with
| "Int" -> Expr.symbol { id with ty = Ty_int }
| "Real" -> Expr.symbol { id with ty = Ty_real }
| "Bool" -> Expr.symbol { id with ty = Ty_bool }
| "String" -> Expr.symbol { id with ty = Ty_str }
| "Float32" -> Expr.symbol { id with ty = Ty_fp 32 }
| "Float64" -> Expr.symbol { id with ty = Ty_fp 64 }
| _ -> (
try Expr.symbol { id with ty = Hashtbl.find custom_sorts name }
with Not_found ->
Fmt.failwith "%acould not find sort: %a" pp_loc loc Symbol.pp id ) )
| Sort, Indexed { basename; indices } -> (
match (basename, indices) with
| "BitVec", [ n ] -> (
match int_of_string n with
| Some n -> Expr.symbol { id with ty = Ty_bitv n }
| None -> Fmt.failwith "Invalid bitvector size" )
| "FloatingPoint", [ e; s ] -> (
match (int_of_string e, int_of_string s) with
| Some e, Some s -> Expr.symbol { id with ty = Ty_fp (e + s) }
| _ -> Fmt.failwith "Invalid floating point size" )
| _ ->
Fmt.failwith "%acould not parse indexed sort:%a %a@." pp_loc loc
Fmt.string basename
(Fmt.parens (Fmt.list ~sep:Fmt.sp Fmt.string))
indices )
| Term, Simple name -> (
match name with
| "true" -> Expr.value True
| "false" -> Expr.value False
| _ -> Expr.symbol id )
| Term, Indexed { basename = base; indices } -> (
match String.(sub base 0 2, sub base 2 (length base - 2), indices) with
| "bv", str, [ "8" ] ->
Expr.value (Num (I8 (Option.get (int_of_string str))))
| "bv", str, [ "32" ] ->
let int = Option.get (int_of_string str) in
Expr.value (Num (I32 (Int32.of_int (int land 0xffffffff))))
| "bv", str, [ "64" ] -> Expr.value (Num (I64 (Int64.of_string str)))
| _ -> Expr.symbol id )
| Attr, Simple _ -> Expr.symbol id
| Attr, Indexed _ -> assert false
| Var, _ -> Fmt.failwith "%acould not parse var: %a" pp_loc loc Symbol.pp id
let str ?loc:_ (x : string) = Expr.value (Str x)
let int ?loc (x : string) =
match int_of_string x with
| Some x -> Expr.value (Int x)
| None -> Fmt.failwith "%aInvalid int" pp_loc loc
let real ?loc (x : string) =
match float_of_string x with
| Some x -> Expr.value (Real x)
| None -> Fmt.failwith "%aInvalid real" pp_loc loc
let hexa ?loc:_ (_ : string) = assert false
let binary ?loc:_ (b : string) =
let set (s : string) (i : int) (n : char) =
let bs = Bytes.of_string s in
Bytes.set bs i n;
Bytes.to_string bs
in
let bv = set b 0 '0' in
Expr.value (Str bv)
let colon ?loc (symbol : t) (term : t) : t =
match Expr.view symbol with
| Symbol s ->
(* Hack: var bindings are 1 argument lambdas *)
Expr.app s [ term ]
| _ ->
Fmt.failwith "%acould not parse colon: %a %a" pp_loc loc Expr.pp symbol
Expr.pp term
let combine_to_int64 sign_bit exponent_bit mantissa_bit =
let sign = Int64.of_string sign_bit in
let exponent = Int64.of_string exponent_bit in
let mantissa = Int64.of_string mantissa_bit in
let sign_shifted = Int64.shift_left sign 63 in
let exponent_shifted = Int64.shift_left exponent 52 in
Int64.logor sign_shifted (Int64.logor exponent_shifted mantissa)
let combine_to_int32 sign_bit exponent_bit mantissa_bit =
let sign = Int32.of_string sign_bit in
let exponent = Int32.of_string exponent_bit in
let mantissa = Int32.of_string mantissa_bit in
let sign_shifted = Int32.shift_left sign 31 in
let exponent_shifted = Int32.shift_left exponent 23 in
Int32.logor sign_shifted (Int32.logor exponent_shifted mantissa)
let apply ?loc (id : t) (args : t list) : t =
match Expr.view id with
| Symbol { namespace = Term; name = Simple name; _ } -> (
match (name, args) with
| "-", [ a ] -> Expr.unop' Ty_none Neg a
| "not", [ a ] -> Expr.unop' Ty_bool Not a
| "and", [ a; b ] -> Expr.binop' Ty_bool And a b
| "and", ts -> Expr.naryop' Ty_bool Logand ts
| "or", [ a; b ] -> Expr.binop' Ty_bool Or a b
| "or", ts -> Expr.naryop' Ty_bool Logor ts
| "xor", [ a; b ] -> Expr.binop' Ty_bool Xor a b
| "+", [ a; b ] -> Expr.binop' Ty_none Add a b
| "+", hd :: tl ->
List.fold_left (fun acc hd -> Expr.binop' Ty_none Add acc hd) hd tl
| "-", [ a; b ] -> Expr.binop' Ty_none Sub a b
| "*", [ a; b ] -> Expr.binop' Ty_none Mul a b
| "/", [ a; b ] -> Expr.binop' Ty_none Div a b
| "mod", [ a; b ] -> Expr.binop' Ty_none Rem a b
| "ite", [ a; b; c ] -> Expr.triop Ty_bool Ite a b c
| "=", [ a; b ] -> Expr.relop' Ty_bool Eq a b
| "distinct", [ a; b ] -> Expr.relop' Ty_bool Ne a b
| ">", [ a; b ] -> Expr.relop' Ty_none Gt a b
| ">=", [ a; b ] -> Expr.relop' Ty_none Ge a b
| "<", [ a; b ] -> Expr.relop' Ty_none Lt a b
| "<=", [ a; b ] -> Expr.relop' Ty_none Le a b
| "to_real", [ a ] -> Expr.cvtop' Ty_real Reinterpret_int a
| "to_int", [ a ] -> Expr.cvtop' Ty_int Reinterpret_float a
| "str.len", [ a ] -> Expr.unop' Ty_str Length a
| "str.at", [ a; b ] -> Expr.binop' Ty_str At a b
| "str.prefixof", [ a; b ] -> Expr.binop' Ty_str String_prefix a b
| "str.suffixof", [ a; b ] -> Expr.binop' Ty_str String_suffix a b
| "str.contains", [ a; b ] -> Expr.binop' Ty_str String_contains a b
| "str.in_re", [ a; b ] -> Expr.binop' Ty_str String_in_re a b
| "str.substr", [ a; b; c ] -> Expr.triop Ty_str String_extract a b c
| "str.indexof", [ a; b; c ] -> Expr.triop Ty_str String_index a b c
| "str.replace", [ a; b; c ] -> Expr.triop Ty_str String_replace a b c
| "str.++", n -> Expr.naryop' Ty_str Concat n
| "str.<", [ a; b ] -> Expr.relop' Ty_str Lt a b
| "str.<=", [ a; b ] -> Expr.relop' Ty_str Le a b
| "str.to_code", [ a ] -> Expr.cvtop' Ty_str String_to_code a
| "str.from_code", [ a ] -> Expr.cvtop' Ty_str String_from_code a
| "str.to_int", [ a ] -> Expr.cvtop' Ty_str String_to_int a
| "str.from_int", [ a ] -> Expr.cvtop' Ty_str String_from_int a
| "str.to_re", [ a ] -> Expr.cvtop' Ty_str String_to_re a
| "re.*", [ a ] -> Expr.unop' Ty_regexp Regexp_star a
| "re.+", [ a ] -> Expr.unop' Ty_regexp Regexp_plus a
| "re.opt", [ a ] -> Expr.unop' Ty_regexp Regexp_opt a
| "re.comp", [ a ] -> Expr.unop' Ty_regexp Regexp_comp a
| "re.range", [ a; b ] -> Expr.binop' Ty_regexp Regexp_range a b
| "re.union", n -> Expr.naryop' Ty_regexp Regexp_union n
| "re.++", n -> Expr.naryop' Ty_regexp Concat n
| "bvnot", [ a ] -> Expr.unop' Ty_none Not a
| "bvneg", [ a ] -> Expr.unop' Ty_none Neg a
| "bvand", [ a; b ] -> Expr.binop' Ty_none And a b
| "bvor", [ a; b ] -> Expr.binop' Ty_none Or a b
| "bvxor", [ a; b ] -> Expr.binop' Ty_none Xor a b
| "bvadd", [ a; b ] -> Expr.binop' Ty_none Add a b
| "bvsub", [ a; b ] -> Expr.binop' Ty_none Sub a b
| "bvmul", [ a; b ] -> Expr.binop' Ty_none Mul a b
| "bvudiv", [ a; b ] -> Expr.binop' Ty_none DivU a b
| "bvurem", [ a; b ] -> Expr.binop' Ty_none RemU a b
| "bvshl", [ a; b ] -> Expr.binop' Ty_none Shl a b
| "bvlshr", [ a; b ] -> Expr.binop' Ty_none ShrL a b
| "bvashr", [ a; b ] -> Expr.binop' Ty_none ShrA a b
| "bvslt", [ a; b ] -> Expr.relop' Ty_none Lt a b
| "bvult", [ a; b ] -> Expr.relop' Ty_none LtU a b
| "bvsle", [ a; b ] -> Expr.relop' Ty_none Le a b
| "bvule", [ a; b ] -> Expr.relop' Ty_none LeU a b
| "bvsgt", [ a; b ] -> Expr.relop' Ty_none Gt a b
| "bvugt", [ a; b ] -> Expr.relop' Ty_none GtU a b
| "bvsge", [ a; b ] -> Expr.relop' Ty_none Ge a b
| "bvuge", [ a; b ] -> Expr.relop' Ty_none GeU a b
| "concat", [ a; b ] -> Expr.concat' a b
| "fp", [ s; eb; i ] -> (
match (Expr.view s, Expr.view eb, Expr.view i) with
| Val (Str sign), Val (Str eb), Val (Str i) -> (
match (String.length sign, String.length eb, String.length i) with
(* 32 bit float -> sign = 1, eb = 8, i = 24 - 1 = 23 *)
| 3, 10, 25 -> Expr.value (Num (F32 (combine_to_int32 sign eb i)))
(* 64 bit float -> sign = 1, eb = 11, i = 53 - 1 = 52 *)
| 3, 13, 54 -> Expr.value (Num (F64 (combine_to_int64 sign eb i)))
| _ -> Fmt.failwith "%afp size not supported" pp_loc loc )
| _ ->
Fmt.failwith "%acould not parse fp: %a %a %a" pp_loc loc Expr.pp s
Expr.pp eb Expr.pp i )
| "fp.abs", [ a ] -> Expr.unop' Ty_none Abs a
| "fp.neg", [ a ] -> Expr.unop' Ty_none Neg a
| ( "fp.add"
, [ { node = Symbol { name = Simple "roundNearestTiesToEven"; _ }; _ }
; a
; b
] ) ->
Expr.binop' Ty_none Add a b
| ( "fp.sub"
, [ { node = Symbol { name = Simple "roundNearestTiesToEven"; _ }; _ }
; a
; b
] ) ->
Expr.binop' Ty_none Sub a b
| ( "fp.mul"
, [ { node = Symbol { name = Simple "roundNearestTiesToEven"; _ }; _ }
; a
; b
] ) ->
Expr.binop' Ty_none Mul a b
| ( "fp.div"
, [ { node = Symbol { name = Simple "roundNearestTiesToEven"; _ }; _ }
; a
; b
] ) ->
Expr.binop' Ty_none Div a b
| ( "fp.sqrt"
, [ { node = Symbol { name = Simple "roundNearestTiesToEven"; _ }; _ }
; a
] ) ->
Expr.unop' Ty_none Sqrt a
| "fp.rem", [ a; b ] -> Expr.binop' Ty_none Rem a b
| ( "fp.roundToIntegral"
, [ { node = Symbol { name = Simple "roundNearestTiesToEven"; _ }; _ }
; a
] ) ->
Expr.unop' Ty_none Nearest a
| ( "fp.roundToIntegral"
, [ { node = Symbol { name = Simple "roundTowardPositive"; _ }; _ }; a ]
) ->
Expr.unop' Ty_none Ceil a
| ( "fp.roundToIntegral"
, [ { node = Symbol { name = Simple "roundTowardNegative"; _ }; _ }; a ]
) ->
Expr.unop' Ty_none Floor a
| ( "fp.roundToIntegral"
, [ { node = Symbol { name = Simple "roundTowardZero"; _ }; _ }; a ] )
->
Expr.unop' Ty_none Trunc a
| "fp.min", [ a; b ] -> Expr.binop' Ty_none Min a b
| "fp.max", [ a; b ] -> Expr.binop' Ty_none Max a b
| "fp.leq", [ a; b ] -> Expr.relop' Ty_bool Le a b
| "fp.lt", [ a; b ] -> Expr.relop' Ty_bool Lt a b
| "fp.geq", [ a; b ] -> Expr.relop' Ty_bool Ge a b
| "fp.gt", [ a; b ] -> Expr.relop' Ty_bool Gt a b
| "fp.eq", [ a; b ] -> Expr.relop' Ty_bool Eq a b
| _ -> Fmt.failwith "%acould not parse term app: %s" pp_loc loc name )
| Symbol ({ name = Simple _; namespace = Attr; _ } as attr) ->
Expr.app attr args
| Symbol { name = Indexed { basename; indices }; _ } -> (
match (basename, indices, args) with
| "extract", [ h; l ], [ a ] ->
let high = ((Option.get @@ int_of_string h) + 1) / 8 in
let low = (Option.get @@ int_of_string l) / 8 in
Expr.extract' a ~high ~low
| "zero_extend", [ bits ], [ a ] ->
let bits = Option.get @@ int_of_string bits in
Expr.cvtop' Ty_none (Zero_extend bits) a
| "re.loop", [ i1; i2 ], [ a ] ->
let i1 = Option.get @@ int_of_string i1 in
let i2 = Option.get @@ int_of_string i2 in
Expr.unop' Ty_regexp (Regexp_loop (i1, i2)) a
| _ ->
Fmt.failwith "%acould not parse indexed app: %a" pp_loc loc Expr.pp id )
| Symbol id ->
Fmt.failwith "%acould not parse app: %a" pp_loc loc Symbol.pp id
| _ ->
(* Ids can only be symbols. Any other expr here is super wrong *)
assert false
let letand ?loc:_ (vars : t list) (expr : t) : t = Expr.let_in vars expr
let forall ?loc:_ = assert false
let exists ?loc:_ = assert false
let match_ ?loc:_ = assert false
let sexpr ?loc:_ = assert false
let annot ?loc:_ = assert false
end
module Statement = struct
open Ast
type t = Ast.t
let reset ?loc:_ () = Reset
let exit ?loc:_ () = Exit
let push ?loc:_ n = Push n
let pop ?loc:_ n = Pop n
let reset_assertions ?loc:_ () = Reset_assertions
let type_decl ?loc:_ = assert false
let type_def ?loc:_ id _is t =
let name =
match Symbol.name id with Simple name -> name | _ -> assert false
in
Hashtbl.replace custom_sorts name (Expr.ty t);
Echo ""
let datatypes ?loc:_ = assert false
let fun_decl ?loc id ts1 ts2 return_sort =
match (id, ts1, ts2, Expr.view return_sort) with
| id, [], [], Symbol sort -> Declare_const { id; sort }
| _ ->
Fmt.failwith "%afun_decl %a (%a) (%a) %a" pp_loc loc Symbol.pp id
(Fmt.list Expr.pp) ts1 (Fmt.list Expr.pp) ts2 Expr.pp return_sort
let fun_def ?loc:_ = assert false
let funs_def_rec ?loc:_ _ = assert false
let assert_ ?loc:_ term = Assert term
let get_assertions ?loc:_ () = Get_assertions
let check_sat ?loc:_ terms = Check_sat terms
let get_model ?loc:_ () = Get_model
let get_value ?loc:_ terms = Get_value terms
let get_assignment ?loc:_ () = Get_assignment
let get_proof ?loc:_ () = assert false
let get_unsat_core ?loc:_ () = assert false
let get_unsat_assumptions ?loc:_ () = assert false
let get_info ?loc:_ info = Get_info info
let get_option ?loc:_ opt = Get_option opt
let echo ?loc:_ x = Echo x
let set_info ?loc:_ term = Set_info term
let set_option ?loc:_ term = Set_option term
let set_logic ?loc logic =
let logic =
Log.on_error ~level:Logs.Debug
~pp:(fun fmt (`Msg err) -> Fmt.pf fmt "%a%s. Using: ALL" pp_loc loc err)
~use:(fun _ -> Ty.ALL)
(Ty.logic_of_string logic)
in
Set_logic logic
end
module Extension = struct
let statement _ = None
end
include
Dolmen.Smtlib2.Script.Latest.Make (Loc) (Symbol) (Term) (Statement)
(Extension)